
Cluster analysis
Finding structure in linguistic data

Dagmar Divjak and Nick Fieller
University of Sheffield

Cluster analysis is an exploratory data analysis technique, encompassing a num-
ber of different algorithms and methods for sorting objects into groups. Cluster
analysis requires the analyst to make choices about dissimilarity measures,
grouping algorithms, etc., and these choices are difficult to make without an
understanding of their theoretical implications and a very good understanding
of the data. This chapter provides an introduction to the distance measures and
clustering algorithms most commonly used for cluster analytic work. Different
from Baayen (2008), Johnson (2008) and Gries (2009), its main aim is to equip
the researcher with at least a basic understanding of what is happening when a
dataset is explored with the help of a particular cluster analytic technique.

Keywords: clustering algorithms, distance measures

1. Introduction

We organisms are sensorimotor systems. The things in the world come in contact
with our sensory surfaces, and we interact with them based on what that sensorimo-
tor contact “affords”. (…) At bottom, all of our categories consist in ways we behave
differently toward different kinds of things, whether it be the things we do or don’t
eat, mate with, or flee from, or the things that we describe, through our language, as
prime numbers, affordances, absolute discriminables, or truths. And isn’t that all that
cognition is for – and about?
 (Stevan Harnad 2005: To Cognize is to categorize: Cognition is categorization)

One of the key concepts in cognitive linguistics is categorization. To be able to cat-
egorize things is a necessary and innate capacity: we need to be able to recognize,
distinguish and understand in order to survive. Our categories signal, for example,
whether the mushroom we pick is edible or not, and whether the animal we encounter

406 Dagmar Divjak and Nick Fieller

is harmless or dangerous. Survival is the main goal of cognition. Categorization is
equally fundamental in language. Growing up, we not only learn which categories are
relevant for us to function in our environment. We also acquire the categories of our
language and learn to use a limited number of words and rules to name a large number
of different items and to express an unlimited number of experiences.

And things do not stop with language. As is the case in other disciplines, catego-
rization is also important in the scientific study of language. As early as the 5th cen-
tury BC, Sanskrit grammarians grouped words into classes – that would later become
known as parts of speech – distinguishing between inflected nouns and verbs and un-
inflected pre-verbs and particles. Categorization efforts have been carried out across
linguistic sub-disciplines, ranging from phonology, morphology, syntax and seman-
tics, to discourse analysis and pragmatics. Despite its long history, even for parts of
speech there is currently no generally agreed-upon classification scheme that would
apply to all languages, or even a set of criteria upon which such a scheme should be
based. In some cases, linguists are only now trying to organize entities into groups so
that they can be compared and described.

With desktop computers replacing filing cabinets, it has become easy for linguists
to create very large databases that contain information on a multitude of properties.
At the same time, this complexity may make it too difficult for the human analyst to
detect any structure. One way of solving this issue is by running a cluster analysis.
Cluster analysis (a term first used by Tryon in 1939) is a multivariate analysis tech-
nique that organizes information about how similar objects or entities are so that
groups, or clusters, can be formed. Pioneered in machine learning, cluster analysis has
found its way via sociolinguistics (e.g. Shaw’s 1974 work on dialectal boundaries) to
linguistics, where it has now been used to describe a wide range of linguistic phenom-
ena (see references elsewhere in this volume). It is also reaching beyond linguistics
into other Arts and Humanities disciplines, aiding, for example, in the classification of
texts according to relevant dimensions (see Alviar 2008 for the application of cluster
analysis in the style characterization of New Testament texts).

Cluster analysis is an exploratory data analysis technique, encompassing a num-
ber of different algorithms and methods for sorting different objects into groups in
such a way that the similarity between two objects of the same group is maximal and
the similarity between two objects that belong to different groups is minimal. In other
words, cluster analysis can be used to discover structures in data and it does this with-
out explaining why that structure exists. Cluster analysis is thus not a routine single
statistical test based on probability theory; instead, it is a data analytic technique, a
collection of different algorithms that put objects into clusters according to well-de-
fined similarity rules. It is mostly used when we do not have any a priori hypotheses,
but are in the exploratory phase of our research. Yet in contrast to other exploratory
methods of this type such as Principal Components Analysis and Multidimension-
al scaling, cluster analysis requires the analyst to make choices, about dissimilarity

 Cluster analysis 407

measures, grouping algorithms, etc., and these choices are difficult to make without
having an understanding of their theoretical implications and a very good under-
standing of the data. This latter requirement is particularly important, since in con-
trast to many other statistical methods, there seem to be fewer diagnostics informing
of the weaknesses of any classification solution proposed.

Before getting started, it is important to stress the focus of this chapter. Like
Baayen (2008: Section 5.1.5), Johnson (2008: Ch. 6) and Gries (2009: Ch. 5.5) before
us, this chapter provides an introduction to the distance measures and clustering al-
gorithms most commonly used (for an idea of the amazing variety of functions for
cluster analysis that R has to offer, see http://cran.r-project.org/web/views/Cluster.
html). Our main aim is, however, to equip the researcher with at least a basic under-
standing of what is happening behind the scenes when s/he explores his/her data with
the help of a particular cluster analytic technique using R (without actually answering
the one unanswerable question: “which method of clustering is best?”). Slightly more
technical details may not suit all readers on first reading. To avoid letting linguistic
opinions overshadow statistical decisions, we have opted to illustrate our chapter with
a topic that would hardly raise any interest in linguistic circles, i.e. the relatedness of
languages, based on the words they use to express the numbers 1 through 10.

Cluster analysis only works on data that is “prepared” in some way. In general,
this preparation equals “operationalizing” parameters deemed relevant in the descrip-
tion of the data, an issue we will elaborate on in Section 2.1. Although cluster analysis
is relatively simple and can use a variety of input data, many aspects rely on ad hoc and
intuitive justification: only certain particular aspects of the techniques are supported
by established statistical theory. Therefore, most of the guidelines for using cluster
analysis are rules of thumb. Once decisions have been made on key steps of the cluster
analysis, topics we will go into in Sections 2.2 and 2.3, the cluster analysis technique
provides a degree of objectivity in determining clusters or groups of similar entities.
This has the advantage of identifying which elements of the analysis are subjective and
then specifying precisely what follows from these subjective decisions, as we will do
in Sections 2.4 and 2.5.1

1. This allows two types of comparisons. On the one hand, comparisons can be made between
analyses based on different subjective decisions applied to the same entities; on the other hand,
comparisons can be made between structures of different sets of entities based on matching
subjective inputs. In other words, two cluster analyses cannot be compared/contrasted unless
they have been applied to the same set of objects or have used the same similarity measure and
clustering algorithm.

408 Dagmar Divjak and Nick Fieller

2. Steps in conducting a cluster analysis

There are several basic cluster analysis steps:

– data collection and selection of the variables for analysis (Section 2.1)
– generation of a similarity matrix and clustering algorithm (Sections 2.2 and 2.3)
– decision about the number of clusters and their interpretation (Section 2.4)
– validation of the cluster solution (Section 2.5)

These steps are interrelated. The type of variable selected for analysis will impose re-
strictions on the choice of how to measure similarities, and the choice of clustering
algorithm will influence the interpretation of the clusters detected.

2.1 Coding and standardization of variables

An important contribution to the statistical analysis of linguistic data, of any data
really, is made by the variables used to capture the phenomenon. A common myth is
that corpus linguists do everything automatically, which would make corpus linguis-
tic techniques unsuited for the study of meaning. Yet at the heart of the corpus-based
study of linguistic phenomena is the manual annotation of examples. This requires
the analyst to read and analyze the examples one by one, just as s/he would do with
a list of examples collected in a notebook or written out on cards. One of the main
differences between a corpus linguist and other linguists is that the corpus linguist se-
lects a random sample from a representative and balanced collection of texts that rep-
resent one or more varieties of the language s/he is studying. The corpus linguist then
works with that sample and is not allowed to include additional sentences that would
nicely illustrate his/her point, nor to remove sentences that disprove his/her account.

An additional challenge the corpus linguist faces is that s/he needs to operational-
ize linguistic parameters in such a way that they can be applied consistently to a large
number of examples and can be fed into a computer for statistical analysis. In other
words, the corpus linguist has to decide how to put his/her variables onto a numeric
scale of some sort, in a way that the variables and variable levels cover all instances en-
countered in the examples. This typically implies an initial analysis of the data, since
not everything is quantified naturally.

Let us consider, as an example, the popular linguistic issue of discovering fam-
ily relations between languages. Given that cardinal numerals seem to only slowly
change their form, and certainly keep their meaning, they testify to older stages of the
language. For this particular example, we limit ourselves to cardinal numerals from
1 to 10 in some Romance, Germanic and Slavonic languages (see Tables 1, 2 and 3).2

2. The study was inspired by a study looking at numerals from one to ten in 11 languages,
published in Wichern and Johnson (2007). The larger dataset, comprising 51 languages, was
collected by Nick Fieller from phrasebooks and exchange students.

 Cluster analysis 409

If we measure the similarity between number words, could we use that informa-
tion to deduce family relationships? And how can we do that? Which variables would
we use? Variables can be any of several different types. Recognizing which type a var-
iable belongs to is important because this affects what choices of analyses are open to
the investigator at a later stage. The initial distinction is between categorical, ordinal
and numerical variables. Within these, various levels of refinement are possible.

A simple, and certainly imperfect idea, yet one that yields a lot of useful infor-
mation, is to use current spelling in terms of initial letters (pronunciation specifics
could be added, as we will demonstrate in Section 2.5); other measures, e.g. number

Table 1. Numerals in some Romance languages

En
gl

is
h

Fr
en

ch

O
cc

ita
n

C
at

al
an

Sp
an

is
h

A
st

ur
ia

n

G
al

ic
ia

n

Po
rt

ug
es

e

It
al

ia
n

Ro
m

an
ia

n

one un un un uno ún um um uno unu
two deux dos dos dos dos dous dois due doi
three trois tres tres tres tres três três tre trei
four quatre quatre quatre cuatro cuatro catro quatro quattro patru
five cinq cinc cinc cinco cinco cinco cinco cinque cinci
six six sièis sis seis seyes ceis seis sei sase
seven sept sèt set siete siete sete sete sette sapte
eight huit uèch vuit ocho ocho oito oito otto opt
nine neuf nòu nou nueve nueve nove nove nove noǔa
ten dix dètz deu diez diez dez dez dieci zece

Table 2. Numerals in some Germanic languages

En
gl

is
h

D
ut

ch

G
er

m
an

Fr
is

ia
n

N
or

w
eg

ia
n

D
an

is
h

Sw
ed

is
h

Ic
el

an
di

c
one een ein ien en en ett einn
two twee zwei twa to to två tveir
three drie drei trije tre tre tre Þrír
four vier vier fjouwer fire fire fyra fjórir
five vijf fünf fiif fem fem fem fimm
six zes sechs seis seks seks sex sex
seven zeven sieben sân sju syv sju sjö
eight acht acht acht atte otte åtta átta
nine negen neun njoggen ni ni nio níu
ten tien zehn tsien ti ti tio tíu

410 Dagmar Divjak and Nick Fieller

of syllables or last letters, output nonsense. If the spelling of the first letter is our
variable of interest, we would have over 30 different variable levels that lack any in-
trinsic ordering, making it a classical example of a categorical variable (sometimes
called a nominal variable), i.e. a variable that has two or more categories, but there
is no intrinsic ordering to the categories. There are plenty of categorical variables in
linguistics. Think of, for example, masculine/feminine/neuter gender or imperfective/
perfective aspect. There is no intrinsic ordering to these categories, no agreed way to
order these from highest to lowest or from smallest to largest, etc. If the variable has
a clear ordering, then that variable would be an ordinal variable, as described be-
low. Categorical variables do not have numeric values so it is not possible to perform
arithmetic calculations (such as calculation of averages) on them either. A categorical
variable with two categories (i.e. a binary variable) may be coded as taking values 0
and 1 but this is merely convention. Even if male is coded as 0 and female as 1, it still
makes no sense to calculate an average gender.

Ordinal variables are similar to categorical variables. The difference between the
two is that ordinal variables do show a clear ordering. Ordinal linguistic variables do
not spring to mind as easily as categorical variables do, probably because they require
some form of data analysis. Let us consider the following example. Suppose you have
a variable that encodes the level of control you have over an action, with three catego-
ries, for example “low” for verbs like forget, “medium” for actions like find and “high”
for verbs like copy. In addition to being able to classify control-situations into these
three categories, you can order the categories as low, medium and high. Although we
can order situations according to the level of control we have over them, the spacing,
i.e. the size of the difference, between the levels may well be inconsistent. The differ-
ence between medium and high control may well be much bigger than the difference

Table 3. Numerals in some Slavonic languages

En
gl

is
h

U
kr

an
ia

n

Ru
ss

ia
n

Bu
lg

ar
ia

n

M
ac

ed
on

ia
n

Se
rb

o-
C

ro
at

Bo
sn

ia
n

Sl
ov

en
e

C
ze

ch

Po
lis

h

Sl
ov

ak

one один один едно един jedan jedan ena jedna jeden jeden
two два два две два dva dva dve dvĕ dwa dva
three три три три три tri tri tri tři trzy tri
four чотыре четыре четири четири četiri cxetiri štiri čtyři cztery štyri
five пять пять пет пет pet pet pĕt pĕt pięć päť
six шістъ шесть шест шест šest sxes šest šest sześć sesť
seven сімъ семь седем седум sedam sedam sedem sedm siedem sedem
eight вісім восемь осем осум osam osam osem ost osiem osen
nine девятъ девять девет девет devet devet devet devĕt dziewięć deväť
ten десятъ десять десeт десет deset deset deset deset dziesięć desäť

 Cluster analysis 411

between low and medium control. As with categorical variables it is not possible to
perform arithmetic calculations on ordinal variables unless they are given numerical
scores to reflect the ordering. However, assigning values 1, 2, 3, … will presume that
the difference between the first two levels is the same as that between the second and
third. Whether this is appropriate is a subjective decision based on the expertise of
the linguist. Often, assigning scores to ordinal variables (i.e. converting them to nu-
merical variables) is the only way of taking the ordering into proper account when
analysing ordinal data. An alternative would be to ignore the ordering and treat it as
a mere categorical variable.

Numerical variables are the easiest to handle in statistics. A distinction is some-
times made between interval and ratio numerical variables. Interval variables are
measured on a scale that does not have an unambiguous zero point (such as temper-
atures) while ratio variables are on a scale with a clear zero. This distinction is rarely
important but may matter: e.g. saying the temperature today is twice as warm as yes-
terday is nonsensical since it depends on the scale used (0F or 0C), while an object is
always twice as long as another whatever units are employed. However, it is possible
to say that the difference between two values of an interval variable (e.g. temperature)
is twice that between two others; this makes many common arithmetic operations
possible on interval variables. Numerical variables may take only discrete values (e.g.
integers) or they may be continuous, i.e. take any value within a range recorded to as
many decimal values as desired. Variables may be restricted to taking only positive
values (e.g. counts or frequencies or percentages) or they might be able to take both
positive and negative values, e.g. ones derived as differences between other measures.3

2.2 Calculation of distances (similarities) between objects

Let us return to our example in which we have decided to use the spelling of the first
letter of the cardinal numeral as the variable of interest. In order to decide which lan-
guages are more similar, we need more than just a variable to explore the cardinal nu-
merals; we also need a way to assess similarity or dissimilarity between the numerals.
In the context of cluster analysis, the term similarity has its everyday meaning of how
similar entities are. More specifically, similarity is a numerical measure of how similar

3. To illustrate the restrictions imposed by the type of variable on choices available at later
stages of the analysis it is useful to consider which familiar summary statistics can be calculated
for the various types. For categorical variables only the mode (or the most commonly occurring
value) can be used. For ordinal variables the median can also be used as a descriptive statistic.
For any numerical variable, whether interval or ratio, all the commonly used statistics such as
mean, variance, standard deviation, analysis of variance, regression etc. can be used but it is
only for ratio variables that it is possible to use coefficients of variations or geometric mean or
logarithms.

412 Dagmar Divjak and Nick Fieller

entities are: the larger that number, the more similar they are. The term distance or
dissimilarity is the converse, i.e. how unlike the entities are. Here, objects are more
dissimilar if the numerical measure is larger. In some situations it is more natural to
think of similarities between objects, e.g. we could regard two words as being similar
if they have similar meanings. In a totally different context we might think it more
natural to concentrate on dissimilarities or distances, e.g. difference in percentages of
occurrence of two words in a given corpus.

Commonly, similarities are based upon a combination of several properties or
variables. For example, we might want a similarity between words to be based not
just on meaning but on frequency of usage, number of syllables, overlap of phonemes
or almost any conceivable property of the word, provided we could put that property
onto a numeric scale of some sort. The numeric scale might be very coarse, e.g. 0, 1, 2
or 3 corresponding respectively to not at all, slightly, fairly and very similar in mean-
ing (all subjective judgements, note), or it might be a more continuous measure with
many possible numeric values, such as a percentage.

Let us look at the Germanic numerals. As we can see in Table 4, if we take the
single first letter at face value, the numeral one begins with e in virtually all Germanic
languages listed, except Frisian and English. Two is spelled with a t in all languages
except German. The first letter of nine is n in all languages, and so on. We could decide
to indicate identity in spelling with 1 and non-identity or difference with 0 for each
of the numerals. Given that we are looking at 10 numerals in each language, we can
sum 1’s (same) and 0’s (different) to get overall a similarity/dissimilarity score out of
ten per language-pair. On this count, the similarity between Dutch and German, two
neighbouring languages, is 5 out of 10, since 5 numerals share an identical first letter,
scoring 1 each, and 5 do not, scoring 0 each. On a similar count, the similarity be-
tween Swedish and Danish is 9 out of 10, with only the numeral 8 having a differently
spelled first letter.

As mentioned before, similarities and dissimilarities are closely related. A dis-
tance between a pair of towns also reveals how close they are. Numerically it is easy

Table 4. A dissimilarity matrix for the spelling of the first letter in Germanic numerals
from 1 to 10

English Dutch German Frisian Norwegian Danish Swedish

English 0 7 5 2 2 2 2
Dutch 7 0 4 6 5 6 5
German 5 4 0 4 3 4 3
Frisian 2 6 4 0 1 2 1
Norwegian 2 5 3 1 0 1 0
Danish 2 6 4 2 1 0 1
Swedish 2 5 3 1 0 1 0
Icelandic 2 5 3 1 0 1 0

 Cluster analysis 413

to construct a similarity from a dissimilarity. For example, a percentage of agreement
can be converted to a percentage of disagreement by subtraction from 100%. The
0, 1, 2, 3 scale coding for not at all, slightly, fairly and very similar referred to above
can be converted to a measure of dissimilarity by subtracting the ranks from 3. This
yields 0, 1, 2, 3 indicating very, fairly, slightly and not at all dissimilar. The reason for
emphasising that similarities and dissimilarities can be calculated from each other is
that, although it may be more natural to think of a similarity between objects in many
situations, most computer packages such as R will require a list of dissimilarities, rath-
er than similarities.

In our example, we can subtract similarities from 10. The dissimilarity between
Swedish and Danish, for example, is 1, since only the numeral 8 has a differently
spelled first letter, the nine remaining numerals being identical in the spelling of the
first letter. If we collect the dissimilarities for all language pairs, we obtain a dissimi-
larity matrix (Table 4).

The way in which the similarity or distance between objects is calculated will de-
termine how objects are grouped together by a computer algorithm into a system of
clusters, sub-clusters, subsubclusters, etc. In particular, if the measure of similarity de-
pends upon severable variables or properties it matters crucially what relative weights
are given to the various properties. For example, we might regard frequency of usage
as being twice as important as the number of syllables in reflecting the semantic simi-
larity between words, so we would want the variable ‘usage’ to be given twice the influ-
ence or weight of ‘number of syllables’ in an overall measure of similarity. Of course,
this is a subjective decision based upon expert knowledge. In fact, giving equal weight
to all properties is also a subjective decision even though it might look as if an attempt
at objectivity has been made.

The sections below describe a few ways of combining properties or variables into
measures of similarity or dissimilarity (or distance). In most cases, it is assumed that
the variables are given equal weight (i.e. are regarded as equally important) but this is
for convenience and it should not be overlooked that using equal weightings implies a
specific decision of equal importance. Which of the various measures is “best” in any
given situation is again a subjective decision but some restrictions on which measures
can be used are imposed by the type of data available, e.g. whether the variables are
categorical or whether they are continuous ratio data or whether there are some of
each type; we will take this up in some detail below.

2.2.1 Categorical variables
Some measures of similarity for categorical variables are designed specifically for bi-
nary categorical variables. At first sight this may appear to be a severe restriction,
but in principle it is always possible to define a set of “dummy” binary variables to
indicate which category an object has. Most recent computer packages handle this
step, if it is required, internally and automatically so that the process is hidden from

414 Dagmar Divjak and Nick Fieller

the user; therefore, we will not describe it here. Furthermore, there is a drawback to
converting categorical variables with large numbers of categories into dummy binary
ones, and so it is generally better to use measures designed specifically for multi-level
categorical variables.

For categorical variables we focus on two measures, the application of which is
not limited to nominal variables, i.e. Matching coefficients for binary variables and the
Jacard coefficient. After a brief description of their mathematical properties, we will
illustrate how this works on a simple example.

Matching coefficients for binary variables: If all the variables measured in an indi-
vidual observation are binary, then the simple matching coefficient is the total number
of matches (of both 1s and 0s) divided by the number of variables. This gives equal
weight to positive and negative matches. This is reasonable for variables such as gen-
der with 1 coding for male and 0 for female or where 1 and 0 code for presence and
absence and a co-absence is of some significance, but it might be misleading in others.

In cases where co-absences are non-informative, a modification of the simple
matching coefficient is the Jacard coefficient obtained by ignoring those variables with
negative matches in the calculation, i.e., it is calculated from the total number of posi-
tive matches divided by the number of variables where at least one of the two individ-
uals has value 1 for that variable. If all variables match negatively then the similarity
is conventionally taken to be 0.

Apart from these two basic matching coefficients, other modifications have been
suggested which affect the weights given to variables where only one of a pair of bina-
ry variables is present for a particular individual. Some of these are discussed in detail
by Gower and Legendre (1986).

To illustrate the calculation of the Matching Coefficients with a simple example,
consider Table 5 which gives the values of two categorical variables on six languages.

Here, the two variables are Family (with possible values Germanic and Slavic) and
Alphabet (with possible values Latin and Cyrillic). These variables can be represented
as binary variables by coding Germanic as 1 and Slavic as 0, and Latin as 1 and Cyrillic
as 0, giving the result shown in Table 6. The choice of which values are coded as 1
and which as 0 is arbitrary here and will not affect the result. This may not always be

Table 5. An example of two categorical variables measured on six languages

Language Family Alphabet

English Germanic Latin
German Germanic Latin
Dutch Germanic Latin
Russian Slavic Cyrillic
Polish Slavic Latin
Serbian Slavic Cyrillic

 Cluster analysis 415

the case, for example, where 1 indicates presence and 0 absence of some property of
attribute. Whether co-absence of a property carries the same significance as co-pres-
ence is not obvious and can only be decided within the context of the example.

The value of the simple matching coefficient used to measure the similarity be-
tween English and German is (1+1) / 2 = 1: the two languages match for the variables
Family and Alphabet and this sum is then divided by 2 because there are two variables
in total. The similarity between English and Polish is (0+1) / 2 = 0.5 since there is no
match on the first variable but there is on the second. Between English and Russian
the similarity is 0 because there are no matches on either of the variables. The com-
plete table of similarities is given in Table 7.

Note that Table 7 is symmetrical about the main diagonal: the similarity between
Russian and Polish, for example, is the same as that between Polish and Russian.

The calculations above have naturally led to measures of similarity. There are,
however, occasions where it is more convenient to work with measures of dissimilari-
ty, not least when computer packages such as R require it for entry into further auto-
matic statistical analysis. The measure of similarity used is necessarily between 0 and
1 (since it is scaled by the total number of possible matches) with 1 indicating maxi-
mum similarity. This makes it easy to convert the values to a measure of dissimilarity
by subtracting them from 1, giving values where 0 indicates minimum dissimilarity
and 1 maximum dissimilarity. The result is shown in Table 8.

Table 6. An example of two binary variables measured on six languages

Language Family Alphabet

English 1 1
German 1 1
Dutch 1 1
Russian 0 0
Polish 0 1
Serbian 0 0

Table 7. Table of similarities between languages based on two binary variables
with a simple matching coefficient

English German Dutch Russian Polish Serbian

English 1 1 1 0 0.5 0
German 1 1 1 0 0.5 0
Dutch 1 1 1 0 0.5 0
Russian 0 0 0 1 0.5 1
Polish 0.5 0.5 0.5 0.5 1 0.5
Serbian 0 0 0 1 0.5 1

416 Dagmar Divjak and Nick Fieller

If we ignore “negative” matches, i.e. a match between zeroes as zeroes indicate
absence of similarity here, then the only changes in Table 7, derived from the simple
matching coefficient, involve pairs where at least one match (but not all) is negative; in
this case this affects Russian and Polish and Serbian and Polish. The exclusion of cases
where all variables match “negatively” is justified because in those cases the distance
is maximal and conventionally taken as 1. The results are shown in Table 9.

2.2.2 Numerical variables
For numerical variables, whether interval or ratio, it is usual to define distances, since
most of the definitions are easily described in geometric terms. It is presumed that all
the variables measured on an object are in the same units. This might mean that they
are all percentages or all lengths measured in centimetres or weights in grams, or it
could mean that they are standardised in some other way (for numerical variables this
could be done by dividing by their standard deviations, and for categorical variables
by dividing by their range, for example). Although we have described special coeffi-
cients for binary variables, practical experience indicates that the various measures
described below can also be used for collections of binary variables provided that
there are more than ten to twenty binary variables. The results of the analyses seem
interpretable and are supported by other available evidence. Some basic and wide-
ly-applied methods include:

Table 8. Table of dissimilarities between languages based on two binary variables
with the complement of a simple matching coefficient

English German Dutch Russian Polish Serbian

English 0 0 0 1 0.5 1
German 0 0 0 1 0.5 1
Dutch 0 0 0 1 0.5 1
Russian 1 1 1 0 0.5 0
Polish 0.5 0.5 0.5 0.5 0 0.5
Serbian 1 1 1 0 0.5 0

Table 9. Table of dissimilarities between languages based on two binary variables
with the complement of a Jacard matching coefficient

English German Dutch Russian Polish Serbian

English 0 0 0 1 0.5 1
German 0 0 0 1 0.5 1
Dutch 0 0 0 1 0.5 1
Russian 1 1 1 0 0 0
Polish 0.5 0.5 0.5 0 0 0
Serbian 1 1 1 0 0 0

 Cluster analysis 417

Euclidean distance. The ordinary geometric distance between two points, A and B,
marked on a piece of paper, as illustrated in Figure 1, is the Euclidean distance.

With only two variables it is possible to represent all the individuals in a col-
lection by points whose coordinates are given by the values. The Euclidean distance
between two points is then obtained by summing the squared differences between the
pairs of corresponding values for the two individuals and taking the square root of the
sum. When there are several variables the procedure is the same except that the sum is
over the squared differences of corresponding values of all variables.

City block distance. The Manhattan or City-block is the sum of the absolute differences
between the pairs of corresponding values for two individuals (rather than the sum
of the squares for Euclidean distance). It would be the distance needed to travel on a
rectangular grid of streets and avenues between two locations, as Figure 1 shows, and
as such is always larger than the Euclidean distance,

If the Manhattan distance measure is applied to binary variables and then divided
by the number of variables, the resulting distance is identical to that obtained by ap-
plying the simple matching coefficient.

Mahalanobis distance. A generalisation of the Euclidean distance is the Mahalanobis
distance. Essentially, the aim is to make appropriate allowance for differing variances
of different variables and the correlations between pairs of those variables. The effect
is that less weight is given to differences in values on variables with large variances
(so the large differences on these do not overwhelm the overall measure) and addi-
tionally to compensate for “duplication of information” when two variables are highly
correlated.

Other measures. As well as the two most commonly-used measures described above,
many other possibilities have been proposed. Some of these are highly specific to

B

A

Manhattan distance

Euclidean distance

Figure 1. The Euclidean and Manhattan distances

418 Dagmar Divjak and Nick Fieller

particular applications and others are based on some theoretical statistical proper-
ty (such as chis-quared distances, distances based on a measure of correlation, and
special formulae when the variables are angles). The correlation-based measures are
particularly useful when the numerical variable has been derived from an ordinal
categorical one, since their use lessens the dependence upon the particular numer-
ical scores used for the ordered categories. A full discussion is given by Gower and
Legendre (1986).

Mixed variables. When some of the variables are numerical and some are categorical
the possibilities are: (i) to convert some of the variables to be of the same type as
the remainder and use one of the measures defined above or, (ii) to use a weighted
sum of similarities calculated separately for variables of the same type or, (iii) to use
a weighted sum of individual similarities calculated from pairs of variables in the
most appropriate way. A special technique for the last of these, the Gower universal
similarity coefficient, defines particular ways of doing this so that the resulting set of
similarities has desirable mathematical properties, which would, however, be beyond
the scope of this chapter.

To illustrate some of these measures we continue the example introduced above
with measures of three numerical variables: number of letters in the alphabet, number
of speakers in millions and number of countries where the language is among the official
languages. The values are given in Table 10. Notice that these variables are measured
in totally different units and we use this to illustrate the pitfalls present unless some
form of standardisation is used.

The Euclidean distance between English and German as reflected by these vari-
ables is √[(26 – 30)2 + (360 – 120)2 + (7 – 3)2] = 240.067. That between English and
Polish is √[(26 – 30)2 + (360 – 40)2 + (7 – 1)2] = 320.081. The complete distance matrix
is given in Table 11.

For illustration and again temporarily ignoring the fact that the variables are
measured in different units, the City-Block or Manhattan distance between English
and German is |26 – 30| + |360 – 120| + |7 – 3| = 4 + 240 + 4 = 248. Here the vertical

Table 10. An example of three numerical variables measured on six languages

Language Number of letters
in the alphabet

Number of speakers
in millions

Official language
in number of countries

English 26 360 7
German 30 120 3
Dutch 26 28 6
Russian 33 155 5
Polish 32 40 1
Serbian 30 8.7 3

 Cluster analysis 419

bars indicate the absolute value of the difference (i.e. larger minus smaller). Table 12
contains the complete distance matrix.

The Manhattan distances are generally a little greater than the Euclidean distanc-
es but a serious drawback to both is that it matters crucially what units are used for
the individual variables. If the number of speakers is measured in billions rather than
millions then the measures are not only changed substantially but the relative order-
ings of them are changed. So, a language which appeared to be “closest” to a given one
(i.e. its nearest neighbour) might appear to be a distant neighbour if the units of one
variable are changed. To demonstrate this, consider the data in Table 13.

Table 11. Distance matrix of Euclidean distances between languages

English German Dutch Russian Polish Serbian

English 0 240.1 332.0 205.1 320.1 351.3
German 240.1 0 92.1 35.2 80.0 111.3
Dutch 332.0 92.1 0 127.2 14.3 19.9
Russian 205.1 35.2 127.2 0 115.1 146.3
Polish 320.1 80.0 14.3 115.1 0 31.4
Serbian 351.3 111.3 19.9 146.3 31.4 0

Table 12. Distance matrix of Manhattan distances between languages

English German Dutch Russian Polish Serbian

English 0 248.0 333.0 214.0 332.0 359.3
German 248.0 0 99.0 40.0 84.0 111.3
Dutch 333.0 99.0 0 135.0 23.0 26.3
Russian 214.0 40.0 135.0 0 120.0 151.3
Polish 332.0 84.0 23.0 120.0 0 35.3
Serbian 359.3 111.3 26.3 151.3 35.3 0

Table 13. An example of three numerical variables measured on six languages

Language Number of letters
in the alphabet

Number of speakers
in billions

Official language
in number of countries

English 26 0.360 7
German 30 0.120 3
Dutch 26 0.028 6
Russian 33 0.155 5
Polish 32 0.040 1
Serbian 30 0.0087 3

420 Dagmar Divjak and Nick Fieller

These are the same as in Table 7 but with the number of speakers expressed in
billions not millions. The table of Euclidean distances calculated from these figures is
given in Table 14.

Table 14. Distance matrix of Euclidean distances between languages

English German Dutch Russian Polish Serbian

English 0 5.662 1.054 7.283 8.491 5.668
German 5.662 0 5.001 3.606 2.830 0.111
Dutch 1.054 5.001 0 8.127 11.012 7.019
Russian 7.283 3.606 8.127 0 5.15 5.146
Polish 8.491 2.830 11.012 5.115 0 4.031
Serbian 5.668 0.111 7.019 5.146 4.031 0

It is clear that not only the distances are changed in value but the relative ordering
between the distances is substantially changed as well. For example, when measuring
the number of speakers in millions (Table 11) the most similar pair is Russian and
German with a Euclidean distance between them of 40.0. If we measure the number
of speakers in billions, then the Russian-German pair is only the fourth closest; the
closest pair is now German and Serbian. Similar changes are seen with the Manhattan
distances but the Mahalanobis distances remain entirely unchanged and are identical
to those in Table 13. We do not give these two tables here but the R code to produce
them is provided in the Appendix. Similarly, it is easy to check that the Gower meas-
ure (given in Table 16) is unaltered by a change of units of a single variable.

This comparison illustrates why the basic similarity measures should only be
used when all the variables are measured in the same units. However, situations arise
frequently in practice where inevitably the variables are in different units. In this case,
variables should be standardised. One method is to divide each variable by its stand-
ard deviation. This can be done in R with the function scale(.) setting datama-
trix<-scale(datamatrix), where datamatrix consists entirely of numerical
values of the variables. A slightly better way is to use a Mahalanobis distance which
additionally compensates for correlations between variables. It is not realistic to cal-
culate a Mahalanobis distance by hand, even for the small example used here, but it
can be done in a good computer package such as R. It does, however, require a little
ingenuity since none of the standard libraries provides a function for calculating all
pairwise distances between points. The complete table (calculated using the R code
given in Appendix) is given in Table 15.

Finally, for mixed variables, i.e. when some are binary and some are numerical,
the Gower coefficient essentially combines a measure based on binary variables with
one based on numerical ones. There is a facility for specifying separate weightings for
each variable but this goes beyond the scope of the description here. It can be added
that the continuous variables are individually scaled but no allowance is made for

 Cluster analysis 421

correlations. For completeness we give the resulting distance table (Table 16) which
was calculated from R using the code given in the Appendix. The data used are those
obtained by combining the categorical variables from Table 5 with the numerical ones
in Table 10.

2.2.3 Choice of similarity measure
In many cases, the choice of similarity measure is also restricted by the type of data
involved, i.e. categorical or numerical (although in some cases it is possible to convert
one type to another). Where there is a choice between available measures, there may
be little practical difference in the resulting analyses. The aspect that is most likely
to affect the analysis, however, concerns the choice of weights given to the various
properties measured. At its extreme, basing an analysis on similarity of meanings will
be entirely different from an analysis based on numbers of syllables, i.e. whether the
weights given to the properties ‘meaning’ and ‘number of syllables’ are 1 and 0, or 0
and 1, respectively. If it is desired to include both properties then it is up to the investi-
gator to make a decision on the appropriate weights to use. Necessarily, this is a matter
of subjective judgement determined by the objective of the analysis. Recall that giving
equal weights is likewise a purely subjective judgement and needs to be justified by the
study objectives. Particular care must be given to cases where variables are measured
in different units. If all of the variables are numerical then they should be standard-
ised to a similar scale. This is generally best done by using Mahalanobis distances

Table 15. Distance matrix of Mahalanobis distances between languages

English German Dutch Russian Polish Serbian

English 0 2.034 2.934 3.096 2.888 2.731
German 2.034 0 2.426 2.534 0.904 1.111
Dutch 2.934 2.426 0 3.091 2.992 1.684
Russian 3.096 2.534 3.091 0 2.889 2.434
Polish 2.888 0.904 2.992 2.889 0 1.376
Serbian 2.731 1.111 1.684 2.434 1.376 0

Table 16. Distance matrix of Gower distances between languages

English German Dutch Russian Polish Serbian

English 0 0.384 0.222 0.783 0.754 0.848
German 0.384 0 0.267 0.572 0.369 0.463
Dutch 0.222 0.267 0 0.706 0.545 0.625
Russian 0.783 0.572 0.706 0 0.427 0.236
Polish 0.754 0.360 0.545 0.427 0 0.342
Serbian 0.848 0.463 0.625 0.236 0.342 0

422 Dagmar Divjak and Nick Fieller

(which also compensates for correlations) but a partial alternative is to use the Gower
coefficient, which does standardise the variables. Even after standardisation it is still
necessary to consider the relative weights of the variables and individual weights for
each variable can be specified when using the Gower metric in function daisy(.).

2.3 Cluster formation

All forms of cluster analysis are essentially algorithmic. That is, they are defined by the
algorithm which actually produces “clusters” of similar objects. The choices that have
to be made are, firstly, how to calculate the distance between clusters. Secondly, it has
to be decided how to form clusters, i.e. whether to grow the clusters from the separate
objects (agglomerative clustering), to divide the complete set of objects into succes-
sively smaller groups (divisive clustering), or to aim for a specific number of clusters
and try to find the best division of the objects into that number of groups (k-means or
partitioning clustering).4 We will discuss each of these options in turn, starting with
agglomerative algorithms.

2.3.1 Agglomerative algorithms
An agglomerative algorithm starts by regarding the n separate objects as n separate
“clusters”. Then, the first step is to join the two objects which are closest together to
form a cluster of size 2. Next, either another pair is joined together to form another
size 2 cluster, or if there is a single object closer to the first size 2 cluster than any other
pair, then it is joined to form a size 3 cluster. The process carries on until finally all the
objects are joined together. Different from the results of PCA or MDS, the outcome
of a cluster analysis can be illustrated in one picture, a tree diagram (or dendrogram).

4. We will not discuss so-called Model-based approaches that assume a variety of data models
and apply maximum likelihood estimation and Bayes criteria to identify the most likely model
and number of clusters, e.g. the Mclust() function in the mclust package.

Nearest
neighbours

Furthest neighbours

Cluster ACluster B
Average distance

Figure 2. Different methods for defining distance between clusters

 Cluster analysis 423

To measure the distance between objects or clusters, possibilities are the mini-
mum, maximum and average distance between two points in different clusters. This
is illustrated in Figure 2. “Average” could be the straightforward arithmetic mean, or
the median, or some other measure based on the squared distance between cluster
means divided by a measure of internal spread within the clusters, usually the average
squared distance of elements from their cluster means. Using the squared distance
rather than just the raw distance ensures that clusters are kept compact and do not
become too spread out.

Let us explore these options in some detail and look at what family relations they
propose for our cardinal numerals, the (dis)similarity between which is assessed on
the basis of current spelling in terms of initial letters.

En
gl

is
h

Fr
is

ia
n

N
or

w
eg

ia
n

Sw
ed

is
h

Ic
el

an
di

c

D
an

is
h

G
er

m
an

D
ut

ch

0
1

2
3

4

Dendrogram of agnes (x = germanic, method = “single”)

Germanic
Agglomerative coe�cient = 0.66

H
ei

gh
t

Figure 3. Agnes clustering of Germanic cardinal numerals using a Single linkage
amalgamation algorithm5

A nearest neighbour or single linkage algorithm will tend to produce clusters where
some objects are separated by a large distance although there is a string of objects in
between them. This is the case because in single linkage, the distance between two

5. agnes() will let you start from a datamatrix of values of variables and then calculate a
distance matrix internally, hence requiring specification of the distance metric, but also allows
you to feed in a distance matrix. Other routines such as hclust() require you to calculate the
distance matrix separately first using dist() or daisy().

424 Dagmar Divjak and Nick Fieller

clusters is computed as the distance between the two closest elements in the two clus-
ters. The result is rather like a railway network where two stations may be connected
even though they are far apart, just because there are several intermediate stops. To be
more specific, in the case of single linkage or nearest neighbour algorithms, the result
reminds of a family tree with the most closely related (e.g. siblings) joined together at
the first level, then separate families of siblings joined at the next level to form cous-
ins and so on to produce a complete genealogy showing descendants from a single
source. At each generation, the numbers of clusters (or families) become smaller but
individual clusters contain members more distantly related. Furthermore, the clusters
formed at one generation are subclusters of the next higher generation and so the
analysis is a hierarchical cluster analysis. Let us look at the Germanic cardinal numbers
from a single linkage point of view (Figure 3).

A dendrogram is a visual representation of the distances at which clusters are
combined. It is read from top to bottom. Horizontal lines show joined clusters. The
position of the line on the scale indicates the distance at which clusters are joined.
When you read a dendrogram, you want to determine where the distances between
clusters that are combined are large; hence you look for large distances between se-
quential vertical lines. From this dendrogram we can read that the most closely re-
lated are three of the Scandinavian languages: Norwegian, Swedish and Icelandic, in
which cardinal numbers are spelled by and large identically. Next, Frisian and Danish
are added. These appear on different sides of the first cluster but this is irrelevant for
the dendrogram structure. The horizontal ordering of clusters in the dendrogram is
arbitrary: a dendrogram can be compared to a children’s mobile, suspended from a
high point with clusters allowed to rotate freely. When it is taken down and laid on the
table the horizontal ordering that the clusters end up in is accidental. In a third step,
English is linked to the cluster including Frisian and Danish. Then German is added
to the amalgam, and finally, Dutch, making Dutch the most dissimilar to the others of
all Germanic languages included in the cardinal numbers sample.

Furthest neighbour or complete linkage algorithms use the maximum pairwise dis-
tance between elements as a measure of distance between clusters. These algorithms
should generally produce more compact clusters, as can be seen in Figure 4 where
English and Frisian as well as Dutch and German now each form a cluster.

Finally, algorithms based on some form of average linkage use the average dis-
tance between two points in different clusters; usually the average is taken as the
straightforward arithmetic mean. These results will be intermediate in scale – in our
case virtually identical to the single linkage result – between single and furthest link-
age methods, as Figure 5 illustrates. Here, the only difference with the dendrogram
resulting from single linkage (Figure 3) is to be found in the way in which Frisian and
Danish are linked to the first cluster: while single linkage adds Danish first, followed
by Frisian, average linkage adds both at the same time.

 Cluster analysis 425

En
gl

is
h

Fr
is

ia
n

N
or

w
eg

ia
n

Sw
ed

is
h

Ic
el

an
di

c D
an

is
h

D
ut

ch

G
er

m
an

Dendrogram of agnes (x = germanic, method = “complete”)

H
ei

gh
t

0
1

2
3

4
5

6
7

Germanic
Agglomerative coe�cient = 0.77

Figure 4. Agnes clustering of Germanic cardinal numerals using a Complete linkage
amalgamation algorithm

H
ei

gh
t

0
1

2
3

4
5

En
gl

is
h

Fr
is

ia
n

N
or

w
eg

ia
n

Sw
ed

is
h

Ic
el

an
di

c D
an

is
h

G
er

m
an

D
ut

ch

Dendrogram of agnes (x = germanic, method = “average”)

Germanic
Agglomerative coe�cient = 0.69

Figure 5. Agnes clustering of Germanic cardinal numerals using an Average linkage
amalgamation algorithm

426 Dagmar Divjak and Nick Fieller

Generally, clusters produced by single linkage will be more “spread out” than
those produced by complete linkage, with those from average linkage somewhere in
between. This is because for a new member to join a cluster on single linkage it only
has to be close to one single member of the cluster; this can result in a long string of
elements, each close to its neighbours but one end a long way from the other. With
complete linkage a new member has to be close to all other members of the group,
keeping the clusters more compact.

The attentive reader will have noticed that all dendrogram plots list the agglom-
erative coefficient (AC), a measure of the clustering structure of the dataset that can
range from 0 to 1. An AC close to 1 indicates that a very clear structuring has been
found whereas an AC close to 0 indicates that the algorithm has not found a natural
structure. This measure is sensitive to sample size, i.e. the value grows with the num-
ber of observations. For this reason, the AC should not be used to compare datasets
of very different sizes. Given that we used the same datasets for all three clusterings,
we can conclude that the combination of the Euclidean distance measure with the
Complete Linkage algorithm yields the best results, the AC being equal to 0.77, thus
outperforming Average Linkage (with AC = .69) and Single Linkage (with AC = .66).

One more method, Ward’s Method, needs to be mentioned here. Ward’s is a var-
iant of the agglomerative methods outlined above and is widely used. This technique
allows two clusters to merge if the increase in sum of squared distances of the mem-
bers of the new cluster from their mean is smaller than for any other possible merger
between two clusters. Use of squared distances penalises spread out clusters and so
results in compact clusters without being as restrictive as complete linkage.

However, in many practical examples the differences between the resulting anal-
yses applied to the same data are surprisingly superficial: with regards to the general
picture, they are much the same with only a few differences of detail. In cases where
there are substantial differences in the composition of clusters, thought must be given
to why such differences occur and which of the methods is the most appropriate for
the research questions of interest.

2.3.2 Divisive algorithms
In principle, the process of forming clusters can work in reverse, i.e. starting by divid-
ing a single large family into two and so on, again leading to a hierarchical analysis.
The aim at each step is to divide the most heterogeneous cluster into two more ho-
mogeneous clusters. Heterogeneity and homogeneity are measures based on the var-
ious alternatives suggested above. In most cases this requires exhaustive examination
of all possibilities and so is computationally very expensive for even medium-sized
data sets. An exception is when the variables are all binary, in which case splits can
be made using just one variable at a time. This monothetic divisive method takes in-
dividual variables in sequence rather than amalgamating them into an average and
divides a cluster so that all elements in the two subclusters have a common value of a

 Cluster analysis 427

particular variable, i.e. if the split is made on the alphabet variable then all elements in
one subcluster will have value 1 for Latin script and in the other subcluster they will
have value 0 of that variable, or Cyrillic script. Choice of which variable to choose has
to be made on some optimality criterion, the discussion of which is beyond the scope
of this chapter.

2.3.3 K-means clustering
An alternative divisive (but non-hierarchical) approach is to specify the desired num-
ber of clusters, k say, and search for a division of the n objects into k groups which
is “best” in some defined sense. Such methods are usually referred to as k-means
procedures and are within the class of optimization methods. A common measure of
“best” is to require the average distance between objects in a cluster and their cluster
centroid to be minimised in comparison to the average distance of cluster centroids
from the centroid of all objects. Here “centroid” usually indicates the mean value of
the cluster, but could be some more general measure of the “center” of the cluster.
The measure used may be based on squared Euclidean distances rather than actual
Euclidean distances to penalise allocations where one or two objects are far away from
the centroid. This ensures more compact clusters which is often a goal of the analysis.

In theory one might try to examine all possible arrangements of the n objects
into k clusters and see which is “best” but the number of possible allocations explodes
rapidly with increasing n and k. For ten objects and three clusters, the number of al-
locations is a little less than ten thousand. Consequently, all available computer tech-
niques rely on iterative procedures. For example, the first step is to divide the objects
arbitrarily into k groups, calculate the group centroids and then reallocate an object
to a different group if it is closer to that group’s centroid than to its own, re-calculating
group centroids after each re-allocation. Generally, such a technique will eventually
converge (meaning that no more re-allocations are required) and the final result will
be optimal or close to optimal. There is no mathematical reason for the procedure to
converge on the absolute optimal solution, so most computer packages allow the pro-
cedure to be tried several times with different randomly selected allocations.

This description begs the question of how to choose k, the desired number of
groups. In the absence of some value being determined a priori by the objectives of
the research, essentially the answer is to try several values and see which produces the
most “sensible answers”. One approach might be to try a more rapid technique such as
single link agglomerative clustering to suggest a suitable number of clusters and then
improve on the allocation.

2.3.4 Differently named methods
There are several named techniques which appear to have special meanings or pro-
cedures, but are in reality merely particular computer implementations of the pro-
cedures described above. Many of these are contained in the widely used R library

428 Dagmar Divjak and Nick Fieller

cluster and are actually functions that have been imaginatively given female first
names (see Kaufman and Rousseeuw 1990 for details).

The basic function for agglomerative clustering in the library cluster is agnes(.)
[from AGglomerative NESting]. This function can take (optional) arguments to de-
termine the particular type of algorithm to be used (i.e. method = “single”, “average”,
“complete” or “ward”). Within this package there are also functions available for other
single non-agglomerative techniques, (i) diana(.) [from DIvisive ANAlysis Clus-
tering] performs divisive hierarchical clustering, (ii) mona(.) [from MONothetic
Analysis clustering of binary variables] is the form of divisive clustering appropriate
when the values of all the variables are 0 or 1, while (iii) pam(.) [from Partitioning
Around Medoids] and (iv) clara(.) [Clustering Large Applications] are both par-
ticular forms of K-means clustering; the latter is useful when the number of objects
is very large (more than several thousand) while in other cases pam(.) is preferred.
Finally, (v) fanny(.) [from Fuzzy ANalYsis clustering] implements a rarely used
method which allows objects to belong partially to each of several different clusters.
In fuzzy clustering, each point has a degree of belonging to clusters rather than be-
longing completely to just one cluster. Thus, points on the edge of a cluster may be in
the cluster to a lesser degree than points in the centre of cluster.

Now, back to our example. What happens when we make the task a bit more dif-
ficult? We can add in more languages from one family, for example, languages that we
know relate in a non-straightforward way to the core languages. As Figure 6 shows,
cluster analysis can deal with such cases, keeping the newly added Celtic languages

H
ei

gh
t

0
1

2
3

4
5

En
gl

is
h

Fr
is

ia
n

N
or

w
eg

ia
n

Sw
ed

is
h

Ic
el

an
di

c D
an

is
h

G
er

m
an

D
ut

ch

Iri
sh

G
ae

lic

W
el

sh

Br
et

on Co
rn

is
h

Dendrogram of agnes (x = germanic extended, method = “single”)

Germanic extended
Agglomerative coe�cient = 0.77

Figure 6. Agnes clustering of Germanic (extended) cardinal numerals using a Single
Linkage amalgamation algorithm

 Cluster analysis 429

distinct from the Germanic core that remains unchanged, while discovering similari-
ties between the Celtic languages.

In other cases, we might not want to limit our sample to a group of languages
that are known to relate to each other but, for example, to all languages spoken in a
particular area. Using areal data rather than family data shows how clustering deals
with expected outliers. As an example, we include Baltic, Finnic and Ugric languages
in the Slavic mix and obtain the dendrogram presented in Figure 7.

Clearly, Latvian and Lithuanian share most similarities with the Slavic languages,
as does, to some extent, Albanian. The further we move to the borders of the Slavic
lands, towards Hungary in the South East and Estonian and Finnish in the North, the
starker the differences become.

We can also add in languages from two different families and ask whether differ-
ent families can reliably be retrieved? This is done in Figure 8, which clearly shows a
division between Germanic and Slavic families.

The more information we include in the cluster analysis, the more complex the
outputted dendrograms become. At the same time, as the number of clusters increas-
es, the more urgently the question poses itself of how to decide on the optimal num-
bers of clusters.

H
ei

gh
t

0
2

4
6

8

La
tv

ia
n

Li
tu

an
ia

n

U
kr

an
ia

n

Ru
ss

ia
n

Bu
lg

ar
ia

n

M
ac

ed
on

ia
n

Se
rb

o–
Cr

oa
t

Bo
sn

ia
n

Cz
ec

h

Po
lis

h

Sl
ov

en
e

Sl
ov

ak

Es
to

ni
an

Fi
nn

is
h

H
un

ga
ria

n

A
lb

an
ia

n

Slavicarea
Agglomerative coe�cient = 0.86

Dendrogram of agnes (x = slavicarea, method = “single”)

Figure 7. Agnes clustering of Slavic area cardinal numerals using a Single linkage
amalgamation algorithm

430 Dagmar Divjak and Nick Fieller

2.4 Deciding on the “optimal” number of clusters

Cluster analysis presents the problem of how many factors, dimensions, or clusters to
keep. Although “look for cluster groupings that agree with existing or expected struc-
tures” and “pick the one solution you like best” is not a frivolous comment in the con-
text of cluster analysis, the utility of clusters must be assessed regardless of the method
used to form the clusters. One rule of thumb for this is, as we mentioned before, to
look at the height bar and to choose a place where the cluster structure remains stable
for a long distance, i.e. no new clusters are added, such as, for example, between the
Germanic and the Slavic group in Figure 8. Below we list three further criteria:

1. Size. All clusters should have enough cases to be meaningful. In the case of
K-means clustering, where the researcher sets the number of clusters to be
formed, one or more very small clusters indicates that the researcher has request-
ed too many clusters. Analysis resulting in a very large, dominant cluster may
indicate too few clusters have been requested.

2. Meaningfulness. Ideally, the meaning of each cluster should be readily intuited
from the constituent variables used to create the clusters. Variable importance
plots are one method of making this assessment.

3. Criterion validity. The cross-tabulation of the cluster identification names or
numbers by variables that are known (from theory or prior research) to correlate
with the concept which clustering is supposed to reflect should reveal the expect-
ed level of association.

H
ei

gh
t

0
2

1
3

4
5

N
or

w
eg

ia
n

Sw
ed

is
h

Ic
el

an
di

c D
an

is
h

U
kr

an
ia

n
Ru

ss
ia

n
Bu

lg
ar

ia
n

M
ac

ed
on

ia
n

Se
rb

o–
Cr

oa
t

Bo
sn

ia
n

Cz
ec

h
Po

lis
h Sl
ov

en
e

Sl
ov

ak

Fr
es

ia
nEn

gl
is

h

D
ut

ch
G

er
m

an

Germanic slavic
Agglomerative coe�cient = 0.86

Dendrogram of agnes (x = germanicslavic, method = “single”)

Figure 8. Agnes clustering of Germanic and Slavic cardinal numerals using a Single
linkage amalgamation algorithm

 Cluster analysis 431

If these criteria are not met, care should be taken when interpreting the results of the
cluster analysis. It may be the case that an inappropriate distance measure has been
selected or that the hypothesized conceptual basis for clustering does not exist, result-
ing in arbitrary clusters.

One way to assess the confidence one may have on the obtained cluster solution
more objectively includes replicating the analysis on a different dataset or on subsets
of the data to see if the structures emerge consistently. This is one of two relatively
straightforward ways of validating a cluster analysis that are explained in the follow-
ing section.

2.5 Calculating the “fit” of/validating a cluster solution

Let us consider another example, this one based on the pronunciation of Slavic nu-
merals, listed in Table 3. The similarity matrix between languages was calculated by
counting the number of matches of first letters as pronounced. This was converted to
a distance matrix by subtracting each similarity from 10, as described in Section 2.2.

The (resulting) dataset was subjected to a cluster analysis with Ward’s cluster-
ing algorithm, using the hclust package.6 The output dendrogram is presented in
Figure 9.

6. We switch to hclust here to maintain consistency with Section 2.5 where we illustrate
pvclust that relies internally on hclust.

H
ei

gh
t

0
2

1
3

4
5

6
7

U
kr

an
ia

n

Ru
ss

ia
n

Bu
lg

ar
ia

n

M
ac

ed
on

ia
n

Se
rb

o–
Cr

oa
t

Bo
sn

ia
n

Cz
ec

h

Sl
ov

en
e

Sl
ov

ak

Po
lis

h

slavDIST
hclust (*, “ward”)

Cluster dendrogram

Figure 9. hclust clustering of Slavic cardinal numerals as pronounced using Ward’s
amalgamation algorithm

432 Dagmar Divjak and Nick Fieller

In the next two sections we will examine the robustness of our clustering result
in two ways, i.e. by means of examining silhouette widths (Section 2.5.1), as well as by
running analyses on random subsamples of the dataset (Section 2.5.2).7

2.5.1 The Silhouette validation technique (Rousseeuw 1987)
Silhouettes are a graphical aid to the interpretation and validation of cluster analy-
sis. Each cluster is represented by a so-called silhouette, which is based on the com-
parison of its tightness and separation. This silhouette shows which objects lie well
within their cluster, and which ones are merely somewhere in between clusters. The
silhouette value measures the degree of confidence in the clustering assignment of
a particular observation, with well-clustered observations having values near 1 and
poorly clustered observations having values near −1. If the silhouette value is close
to 1, the sample is “well-clustered”, i.e. it was assigned to a very appropriate cluster. If
the silhouette value is around zero, that sample could be assigned to another cluster
as well, and the sample lies equally far away from either option. If the silhouette value
is close to –1, the sample is “misclassified” and is somewhere in between the clusters.

The entire clustering is displayed by combining the silhouettes into a single plot,
allowing an appreciation of the relative quality of the clusters and an overview of the
data configuration. The overall average silhouette width for the entire plot is the aver-
age of the S(i) for all objects in the whole dataset. The largest overall average silhouette
indicates the best clustering. Since the average silhouette width provides an evaluation
of clustering validity, it might be used to select an “appropriate” number of clusters.

For our dataset, we see that we can be reasonably sure that Ukrainian, Russian,
Bulgarian and Macedonian form a coherent group, with the silhouette width for that
cluster of four languages being 0.43 (Figure 10). We are less sure that Serbo- Croat,
Bosnian, Czech, Slovak and Slovene, if combined into one cluster, indeed belong to-
gether, their silhouette width being 0.20. Polish, finally, is kept separate, and the sil-
houette value for that separate cluster is 0, indicating that Polish could well have been
assigned to a different cluster. The overall average silhouette width remains at a low
0.27, indicating that the proposed clustering as a whole may not be too sensible; this
is very likely due to the way in which the pronunciation data was coded. Maybe a

7. The function cluster.stats() in the fpc package (Hennig 2010) provides a mecha-
nism for comparing the similarity of two cluster solutions using a variety of validation criteria,
including the average silhouette widths treated below. To be precise, cluster.stats() com-
putes a number of distance based statistics which can be used for cluster validation, comparison
between clusterings and decision about the number of clusters: cluster sizes, cluster diameters,
average distances within and between clusters, cluster separation, average silhouette widths, the
Calinski and Harabasz index, the best distance based statistics to decide about the number of
clusters in a study of Milligan and Cooper (1985), Hubert’s gamma coefficient, the Dunn index
and two indexes to assess the similarity of two clusterings, namely the corrected Rand index
and Meila’s VI. Another package of interest in this respect is clValid (Brosk et al. 2011).

 Cluster analysis 433

2-cluster solution would fit the data better? In the next section we will introduce a
technique that can assess this (un)certainty in terms of the more familiar p-values.

2.5.2 pvclust

The uncertainty in hierarchical cluster analyses can be assessed, even if no independ-
ent test-sample is available, by means of p-values or values between 0 and 1 that in-
dicate how strongly the clusters are supported by the data. pvclust is an R package
that performs hierarchical cluster analysis on a numeric data matrix or data frame via
the function hclust and automatically computes p-values for all clusters contained
in the clustering of the original data.8 It also provides graphical tools such as the plot

8. The function pvclust, used for assessing uncertainty in clustering and illustrated below,
is written so that it will only accept data entered as values of numerical variables (unlike agnes
used so far which offers the choice of entering a distance matrix directly). Further, a method
of calculating the distance matrix from the values of the numerical variables must be selected
from a limited set of choices of Euclidean, Manhattan or binary. For the purposes of being
able to illustrate pvclust we have fudged raw data by first calculating approximate Euclidean
coordinates from the distance matrix using the R function cmdscale and then use these to
calculate an approximate distance matrix. The result corresponds closely with that obtained
based on actual numbers of matches and non-matches, no entry differing by more than 1.5 on
a scale of distances between 0 and 10. This is not a technique we would usually recommend and
we present it here only so that we can illustrate the use of pvclust for assessing uncertainty in
clustering.

Silhouette plot of (x = cutree (slavicpronunciation.clust.ward, k = 3), dist = slavicpronunciation

n = 10

1

2

3

4

8

5

10

9

6

7

Average silhouette width: 0.27

3 cluster C
j

Silhouette width si

j : n
j
l ave

i∈Cj
 s

i

1 : 4 l 0.43

2 : 5 l 0.20

3 : 1 l 0.00

1.00.80.60.40.20.0

Figure 10. Silhouette plot for a three-cluster solution of Slavic cardinal numerals
as pronounced

434 Dagmar Divjak and Nick Fieller

function or the pvrect function which highlights clusters with relatively high/low
p-values.

For each cluster in hierarchical clustering, p-values are calculated via multiscale
bootstrap resampling, a computer-based way of simulating similar datasets. pvclust
provides two types of p-values: the AU (Approximately Unbiased) p-value (on the
left, normally in red) and BP (Bootstrap Probability) value (on the right, normally
in green). The AU p-value, which is computed by multiscale bootstrap resampling, is
a better approximation to unbiased p-value than the BP value computed by normal
bootstrap resampling. Going into details about bootstrap resampling methods is be-
yond the scope of this chapter.

Clusters that are highly supported by the data will have large p-values. pvclust,
by and large, confirms the assessment based on silhouette widths:9 we should not be
too sure that the larger clusters exist outside of this dataset. When using a different
dataset that likewise assesses the languages on the basis of the pronunciation of Slavic
numerals between 1 and 10, we can be 100% sure, however, that Bulgarian and Ma-
cedonian would be grouped together and 97% certain that Bulgarian, Macedonian,
Ukrainian and Russian would be clustered together, while being 95% sure that Bos-
nian, Serbo-Croat and Czech would end up in the same group.

9. Be aware that pvclust clusters columns, not rows. This necessitates transposing the data
before running the procedure. The code is provided in the Appendix to this chapter.

H
ei

gh
t

0
1

2
3

4
5 Po

lis
h

au bp
edge #

73 49
8

97 36
5

80 70
2

95 59
4 85 28

3

100 100
1

75 26
7

65 47
6

6
7

U
kr

an
ia

n

Ru
ss

ia
n

Bu
lg

ar
ia

n

M
ac

ed
on

ia
n

Se
rb

o-
Cr

oa
t

Bo
sn

ia
n

Cz
ec

h

Sl
ov

en
e

Sl
ov

ak

Cluster dendrogram with AU/BP values (%)

Figure 11. pvclust, p-values for a dendrogram of Slavic cardinal numerals
as pronounced. Distance: Euclidean; method: Ward. 1000 bootstraps

 Cluster analysis 435

3. By way of conclusion

This brief account could do little more than introduce Cluster Analysis as an intuitive
tool for describing and categorizing linguistic data in a systematic and reproducible
way that displays the outcome of the analysis visually in one dendrogram. We have
emphasized that this does not give a totally “objective” method. On the contrary, there
are many steps where subjective choices have to be made. We have highlighted these
and discussed the impact that these may have on the ensuing results. The attentive
reader will also have noticed that, different from its direct competitors PCA and MDS,
Cluster Analysis does not provide information on the relative importance of varia-
bles or underlying factors; it is up to the analyst to extract these from the data (see
Divjak and Gries 2006 for the implementation of some suggestions by Backhaus et al.
1996: 310–312).

We did not feel it was appropriate here to go into the theoretical statistical back-
ground underpinning the methods. For these the reader is referred to Everitt et al.
(2011) for the statistical side and to Johnson (2008), Baayen (2006) or Gries (2009)
for an account in a linguistic setting. Neither have we done more than give the min-
imum of details of the R code and R language needed to implement them. For these
the reader is referred to the textbooks and to the R system itself. Readers who invest
some time trying the R system for themselves will quickly discover the power of its
internal Help system. We have listed the names of the primary functions used for
the various types clustering and these are sufficient to find details of how they are
used and worked examples giving illustrations from the Help system. The reader is
encouraged to work through these in detail and be assured that the initial effort will
be quickly repaid.

References

Alviar, J. J. (2008). Recent advances in computational linguistics and their application to biblical
studies. New Testament Studies, 54(1),139–159 DOI: 10.1017/S0028688508000088

Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R.
Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511801686

Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (1996). Multivariate Analysemethoden: Eine
anwendungsorientierte Einführung. 8th edition. Berlin; Heidelberg; New York: Springer.

Brock, G., Pihur, V., Datta, S., & Datta, S. (2011). clValid: Validation of clustering results. Jour-
nal of Statistical Software, 25(4), March 2008. R package version 0.6-2. <http://CRAN.R-
project.org/package=clValid>.

Divjak, D., & Gries, St. Th. (2006). Ways of trying in Russian: Clustering behavioral profiles.
Journal of Corpus Linguistics and Linguistic Theory, 2(1), 23–60.

Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis. 5th edition. Oxford:
Wiley. DOI: 10.1002/9780470977811

http://dx.doi.org/10.1017/S0028688508000088
http://dx.doi.org/10.1017/CBO9780511801686
http://CRAN.R-project.org/package=clValid
http://CRAN.R-project.org/package=clValid
http://dx.doi.org/10.1002/9780470977811

436 Dagmar Divjak and Nick Fieller

Gower, J., & Legendre, P. (1986). Metric and Euclidean properties of dissimilarity coefficients.
Journal of Classification, 3(1), 5–48. DOI: 10.1007/BF01896809

Gries, St. Th. (2009). Statistics for linguistics with R: A practical introduction. Berlin: Mouton de
Gruyter. DOI: 10.1515/9783110216042

Harnad, S. (2005). To cognize is to categorize: Cognition is categorization. In C. Lefebvre &
H. Cohen (Eds.), Handbook on categorization (pp. 19–43). Oxford & London: Elsevier.

 DOI: 10.1016/B978-008044612-7/50056-1
Hennig, C. (2010). fpc: Flexible procedures for clustering. R package version 2.0-3. <http://

CRAN.R-project.org/package=fpc>.
Johnson, K. (2008). Quantitative methods in linguistics. New York: Wiley-Blackwell.
Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analy-

sis (Series in Applied Probability and Statistics). New York: Wiley-Blackwell.
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the

number of clusters in a data set. Psychometrika, 50, 159–179.
R Development Core Team (2008). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. <http://
www. R-project.org>.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of clus-
ter analysis. Journal of Computational and Applied Mathematics, 20(1), 53–65.

 DOI: 10.1016/0377-0427(87)90125-7
Shaw, D. (1974). Statistical analysis of dialectal boundaries. Computers and the Humanities, 8,

173–177. DOI: 10.1007/BF02402137
Suzuki, R., & Shimodaira, H. An R package for hierarchical clustering with p-values. Retrieved

from <http://www.is.titech.ac.jp/~shimo/prog/pvclust/t/> [Accessed 25 May 2012].
Tryon, R. C. (1939). Cluster analysis. New York: McGraw-Hill.
Wichern, D. W., & Johnson, R. A. (2007). Applied multivariate statistical analysis. Englewood

Cliffs: Prentice-Hall.

Appendix

R code to create the distance matrices (tables) and dendrograms (figures)
shown in this chapter

In this final section we provide the code necessary to carry out the operations illustrated in this
chapter. Those with little familiarity with R can run the code by copying it, bit by bit, into the
R console, although it may be helpful to consult a basic introduction for R first. The data and R
sessions can be downloaded from http://dx.doi.org/10.1075/hcp.43.16div.additional.
 We first provide the R code for calculating the tables of distances using the various meas-
ures we described above in Tables 5 through 14.
 The easiest function to use is dist(.) which is in the stats library and so is automati-
cally loaded for every R session. The dist(.) function allows computation of distances based
on the simple matching and Jacard coefficients for binary data and Euclidean and Manhat-
tan distances for continuous data. Which distance is calculated is determined by specifying

http://dx.doi.org/10.1007/BF01896809
http://dx.doi.org/10.1515/9783110216042
http://dx.doi.org/10.1016/B978-008044612-7/50056-1
http://CRAN.R-project.org/package=fpc
http://CRAN.R-project.org/package=fpc
http://www. R-project.org
http://www. R-project.org
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1007/BF02402137
http://dx.doi.org/10.1075/hcp.43.16div.additional

 Cluster analysis 437

it the argument method. It should be noted that if method is given as binary then distances
are calculated as the complement of the Jacard coefficient. To obtain distances based on the
complement of a simple matching coefficient (i.e. giving equal weight to positive and negative
matches) then the Manhattan method should be chosen. This is not mentioned in the R docu-
mentation.
 A more flexible function is daisy(.) which is in the cluster library and must be loaded
separately. This allows all of the previously mentioned coefficients plus the Gower coefficient.
The distance measures for binary variables are handled by specifying gower as the metric and
then choosing symmetric or asymmetric for the simple or Jacard coefficients. Care must be
taken when using the daisy(.) function that the classes of variables are declared correctly as
factor or numerical. The R help system gives full details of this.
 Neither of these functions allows calculation of the Mahalanobis distances and although
there is a mahalanobis function in the stats library it is not designed to calculate the com-
plete set of pairwise distances between points. We give some code to produce the complete
pairwise distances and experienced R users may recognise that the key idea is to standardise
the data matrix before calculating the Euclidean distances.

load the library needed for accessing the function daisy(.)
library(cluster)
options(digits=3)

the following code assumes that all data files are in the
current R working directory; if that is not the case, replace
file=“filename.txt” with choose.files() that will let
you browse your computer to select the file of interest

read in the data from Table 6 from a comma separated file
with first line as header and first column as row names
excategoric<-read.csv(file=“excategoric.csv”,header=T,row.names=1)
calculate distances
dist(excategoric,method=“manhattan”)/2
dist(excategoric,method=“binary”)

read in data in Table 10 from a comma separated file with
first line as header and first column as row names
exnumerical<-read.csv(file=“exnumerical.csv”, header=T, row.names=1)
calculate Euclidean distances
dist(exnumerical,method=“euclidean”)
calculate Manhattan distances
dist(exnumerical,method=“manhattan”)
calculate Mahalanobis distances
v=var(exnumerical)
x<-svd(v)
vroot<-x$u%*%diag(sqrt(x$d))%*%t(x$v)
dist(as.matrix(exnumerical)%*%solve(vroot))

438 Dagmar Divjak and Nick Fieller

read in complete data of mixed categorical and numerical
variables from a comma separated file with first line as
header and first column as row names
exmixed<-read.csv(file=“exmixed.csv”,header=T,row.names=1)
calculate the Gower distances
daisy(exmixed,metric=“gower”)

Repeat calculations of distances after converting data
to billions of speakers, then repeat calculations above
exnumerical[,2]<-exnumerical[,2]/1000
now have numbers of speakers in billions
calculate Euclidean distances
dist(exnumerical)
calculate Manhattan distances
dist(exnumerical,method=“manhattan”)
calculate Mahalanobis distances
v=var(exnumerical)
x<-svd(v)
vroot<-x$u%*%diag(sqrt(x$d))%*%t(x$v)
dist(as.matrix(exnumerical)%*%solve(vroot),method=“euclidean”)

Next, we provide the R code for running the cluster analyses we described above in Figures 3
through 11.

reads in .txt files, recognizes them as dissimilarity
matrices and converts them to Rdata files
this code assumes that all data files are in the current R
working directory; if that is not the case, replace
file=“filename.txt” with choose.files() that will let
you browse your computer to select the file of interest

x<-read.table(file=“Germanic.txt”,header=T,row.names=1)
reads in .txt file
germanic<-as.dist(x)
coerces the object x to be of class “distance”,
i.e. makes sure that the dissimilarity matrix is read
in as a ready dissimilarity matrix
save(germanic, file=“germanic.Rdata”)
saves it as Rdata file

x<-read.table(file=“Germanic_extended.txt”,header=T,row.names=1)
germanicextended<-as.dist(x)
save(germanicextended, file=“germanicextended.Rdata”)

x<-read.table(file=“Slavic area.txt”,header=T,row.names=1)
slavicarea<-as.dist(x)
save(slavicarea, file=“slavicarea.Rdata”)

 Cluster analysis 439

x<-read.table(file=“Germanic_Slavic.txt”,header=T,row.names=1)
germanicslavic<-as.dist(x)
save(germanicslavic, file=“germanicslavic.Rdata”)

x<-read.table(file=“Slavic pronunciation.txt”,header=T,row.names=1)
turns a similarity matrix into a distance matrix
slavicpronunciation<-10-as.dist(x)
save(slavicpronunciation, file=“slavicpronunciation.Rdata”)

loads the libraries needed to run the cluster analyses
runs the cluster analyses described and outputs
the dendrograms

library(cluster)
library(amap)

#figure 3
load(“germanic.Rdata”) # loads the dataset
germanic.clust.single<-agnes(germanic,method=“single”)
clusters the data using single linkage; no distance
metric needs to be specified since the data are entered
as dissimilarities
plot(germanic.clust.single) # outputs the dendrogram

#figure 4
load(“germanic.Rdata”)
germanic.clust.compl<-agnes(germanic,method=“complete”)
plot(germanic.clust.compl)

#figure 5
load(“germanic.Rdata”)
germanic.clust.average<-agnes(germanic,method=“average”)
plot(germanic.clust.average)

#figure 6
load(“germanicextended.Rdata”)
germanicextended.clust.single<-agnes(germanicextended,method=“single”)
plot(germanicextended.clust.single)

#figure 7
load(“slavicarea.Rdata”)
slavicarea.clust.single<-agnes(slavicarea,method=“single”)
plot(slavicarea.clust.single)

440 Dagmar Divjak and Nick Fieller

#figure 8
load(“germanicslavic.Rdata”)
germanicslavic.clust.single<-agnes(germanicslavic,method=“single”)
plot(germanicslavic.clust.single)

#figures 9, 10 & 11
loads the library
library(pvclust)

loads the dataset
load(“slavicpronunciation.Rdata”)

runs a multidimensional scaling to obtain
approximate Euclidean coordinates
slavMDS<-cmdscale(slavicpronunciation,k=9,eig=TRUE,x.ret=TRUE)
slavcoords<-slavMDS$points[,1:6]
slavDIST<-dist(slavcoords,method=“euclidean”)

runs cluster analysis with hclust using
Ward’s amalgamation strategy
slavicpronunciation.clust.ward<-hclust(slavDIST, method=“ward”)
#plots the dendrogram
plot(slavicpronunciation.clust.ward)

cuts the dendrogram into 3 clusters
sil<-silhouette(cutree(slavicpronunciation.clust.ward,k=3),
slavicpronunciation)
plots the silhouette widths
plot(sil, nmax=80, cex.names = 0.5)

clusters the data using ward’s amalagamation algorithm
while taking 1000 random samples
pron.slavic.pvclust<-pvclust(t(slavcoords),
method.dist=“euclidean”, method.hclust=“ward”, nboot=1000)
plots the results
plot(pron.slavic.pvclust)
draws rectangles around the highest cluster(s) that are
distinguished at the .05 level
pvrect(pron.slavic.pvclust, alpha=0.95)

A simple way of creating dissimilarities from similarities for the numerals dataset is subtracting
the difference value from the maximum similarity of 10, for example, as was done for the Slavic
pronunciation dataset above

slavicpronunciation.dis<-10-slavicpronunciation

 Cluster analysis 441

It may be necessary to transpose the rows and columns since pvclust clusters what is in the
rows. This is done as follows:

pron.slavic<-t(pron.slavic)

If a dataset contains large numbers of items to be clustered, the interactive function identify.
hclust can be used to list the members of a cluster by pointing with the mouse and clicking
(with the right button) on the vertical bars (a.k.a. ancestor lines).

