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Correspondence analysis is an exploratory technique for complex categorical 
data, typical of corpus-driven research. It identifies patterns of association and 
disassociation in those data. For instance, it can map the correlations between 
different uses of a linguistic form and its various social and/or morpho-syntac-
tic contexts. The technique presents its results in the form of a two-dimensional 
plot, which visualises these relationships in an intuitive manner. These plots of-
fer rich representations of the relations between different facets of complex data. 
Using R, this chapter explains how the technique works and offers a step-by-
step explanation of its application and the interpretation of its results. The tech-
nique is also compared to the better-known and comparable cluster analysis. 
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1. A technique for visualising correlations in categorical data

Correspondence analysis is a multivariate exploratory space reduction technique for 
categorical data analysis.1 Although true, such a description tells the linguist little. 
Equally true, but perhaps more helpful, is to describe correspondence analysis as an 
exploratory technique that reveals frequency-based associations in complex corpus 
data. Most importantly, perhaps, the technique visualises these associations to facili-
tate their identification. Linguists often wish to find relations between given linguistic 
forms, between their meanings and in what situations those forms and meanings are 
used. Correspondence analysis is especially designed for identifying such usage pat-
terning. The visualisation of the relations takes the form of configuration biplots, or 
maps, which depict degrees of correlation and variation through the relative proximity 

1. I would like to thank Koen Plevoets who first taught me this technique and Joost van de 
Weijer for his help polishing this paper. All shortcomings are my own.
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of data points (which represent linguistic usage features and/or the actual examples of 
use). This chapter describes how to perform correspondence analysis in R. It explains 
the R code needed to execute the analyses and shows how to interpret the results. 

1.1 Use – What does correspondence analysis do?

In their quotidian research, linguists, from all kinds of theoretical orientations, an-
alyse various usage-features of naturally occurring utterances. By way of example, 
imagine that one obtains 600 examples of a given word, a grammatical case, or a syn-
tactic pattern. These examples can then be analysed, using traditional intuition-based 
analysis for a range of usage-features, such as tense, aspect, argument structure, agent 
type, the ground or path type, and the register or genre from which the example is 
taken. The results of analysing the examples of these usage-features can be summa-
rised as counts of how often each of the features occurs. Significance tests can then 
be used to show that the occurrence of certain features is substantially more common 
than could be expected by chance. This statistically significant variation can then, in 
turn, be interpreted as representing a distinct pattern of usage. 

However, with more than a couple of different dimensions of analysis or large 
numbers of features at play, interpreting the numbers of occurrences becomes in-
creasingly difficult, if not impossible. Quite simply, correspondence analysis is an 
exploratory tool that helps one find which usage-features co-occur with other us-
age-features, giving a map of their overall patterning. Assuming that one is adopting a 
cognitive or functional approach to language, these usage-patterns can be interpreted 
as grammatical description, operationalised in terms of relative frequency.

It must be stressed that this technique is designed solely for exploratory purposes. 
In other words, it is a tool for finding things, not for establishing their significance or 
discerning their relevance. Therefore, it offers you no assurance that patterns found 
are anything more than a chance result, specific to the sample under observation. 
Moreover, this tool does not tell you where to look. Although exploratory, one must 
avoid ‘fishing’ for results by randomly combining factors in the hope of finding cor-
relations that could be interpretable. Even if one finds correlations that ‘make sense’, 
such an approach increases the chance of finding co-incidental correlations or chance 
patterns in the sample.2 A metaphor that might be helpful is that of the shovel for the 
archaeologist: if one digs randomly, everywhere, it increases the chances of finding 

2. Weller and Romney (1990: 57) suggest performing tests for independence, such as those 
presented in Chapter 1, to ascertain if there exists statistically significant variation before one 
performs correspondence analysis. Although this is optional, it may be a good guideline to 
avoid falling into the trap of thinking the correlations identified are significant. It must be re-
membered, however, that obtaining statistical significance is dependant upon the size of the 
sample. With a large enough sample, very small variations will be significant, and with small 



 Correspondence analysis 445

things, but exponentially increases the chance of finding irrelevant things. Corre-
spondence analysis is a tool for digging in the data to look for patterns and corre-
lations, but it certainly helps if one knows where to dig. This metaphor can serve us 
further: when an archaeologist finds an artefact, it is still up to the archaeologist to 
interpret the finding as well as to verify its authenticity. Correspondence analysis, 
assuming you have a reasonable hypothesis about where to look, is a basic and useful 
tool for unearthing patterns in the data, but it is no more than that.

1.2 Concept – How does correspondence analysis work?

Basically, correspondence analysis takes the frequency of co-occurring features and 
converts them to distances, which are then plotted, revealing how things are related 
by how close to or far from each other they are in a two- or three-dimensional vis-
ualisation. In the detail, there is much more to the technique, but this is the principle. 
Explaining a few key concepts will allow us to better understand the functioning of 
the technique as well as to interpret its results. 

Distance matrix
The distance matrix is sometimes also called a proximity matrix and even a dissim-
ilarity matrix. The concept is simple: the frequencies of co-occurrence are convert-
ed to distances. The resulting distance matrix can then be visualised in a two- or 
three-dimensional Euclidean space (‘normal’ perceptual space). In fact, more precise-
ly, it is the differences between the rows and columns of frequencies that are convert-
ed to distances. Correspondence analysis uses the Chi-squared distance measure to 
produce the distance matrix. This measure is designed to compensate for different 
‘amounts’ of a given category. If one has only a few examples of a given feature, let us 
say the ‘future tense’, it is highly likely that they will all, or mostly, co-occur with some 
other feature, such as a given verb. However, due to the low numbers involved, this 
is much more likely to be chance than other correlations identified. The Chi-squared 
distance measure attempts to compensate for this kind of bias. Nevertheless, despite 
the use of the Chi-squared measure, with experience, one will still observe (in the 
plots) correlations that are likely to be due to small numbers of a given feature. It is al-
ways necessary to go back to both the data, that is, the actual language examples, and 
to the raw frequencies, to see what the plots have ‘revealed’. Greenacre (2007: Ch. 4) 
offers a lucid explanation of the Chi-squared distance measure. 

samples (typical of semantic research), significance is much less commonly obtained. This is, of 
course, how it should be – it stops analysts making bold claims based on small samples.
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Euclidean cloud 
The distance matrix takes the form of a Euclidean cloud. In other words, it is a spread 
of points in a given space, like rice thrown onto a board or the holes made by darts 
on a dartboard. In more technical parlance, correspondence analysis computes the 
‘Eigenvectors’ (explained below) of a correlation matrix and produces this Euclidean 
‘map’, in one or two dimensions of that correlation. This can be thought of as reduc-
ing a set of Chi-squared scores to Euclidean distances (natural perceptual distances), 
suitable for two- or three-dimension visualisations. For the reader familiar with ex-
ploratory statistics, it is essentially the same as principal components analysis, but 
modified for categorical data.

Profiles and mass
A profile is the behavioural characteristics of a given category in the analysis, deter-
mined by the set of relative co-occurrence frequencies of that category. In a frequency 
(contingency) table, it is a column or a row containing all the relative frequencies of 
those co-occurrences. It is these profiles that the correspondence analysis plots. To 
calculate the profile, you add the number of occurrences for each feature in a row. You 
then divide each of those occurrences by the sum of them. This gives you a profile 
figure for each cell. The same procedure is undertaken for the columns, giving you 
the column profiles. 

However, as mentioned above, not all the co-occurrences are of equal impor-
tance. Infrequent features would have a disproportionate effect if all were taken equal-
ly. Correspondence analysis uses the weighted averages of the profiles to compensate 
for this. In correspondence analysis, the term ‘mass’ is used to mean ‘weight’. Weight-
ing an average modifies the calculation to bias certain scores. It is widely used in basic 
statistics, from calculating the average score in a class test to the average monthly 
profit of a franchised shop. Although the idea of adding bias to any calculation may 
raise concern, in this case it is conventional and entirely accepted within the statistics 
community.

Inertia and variation
The higher the inertia one obtains, the better. Inertia is the term used in correspond-
ence analysis to talk about the degree of variation. The inertia is calculated on ob-
served and expected frequencies of co-occurrence. Inertia is high when column and 
row profiles have large deviations from their averages. In multiple correspondence 
analysis (as opposed to binary correspondence analysis), these scores are not normal-
ly interpretable, which is a major drawback for this form of the technique. They are 
not interpretable because the scores calculated seriously underestimate the amount 
of accurately described variation, giving unnecessarily ‘bad’ results. Two corrections 
to this have been proposed, firstly by the original author of the technique, Benzécri 
(1979 [reported in Greenacre 2006: 68]), and secondly by one of the current main  



 Correspondence analysis 447

proponents of the technique, Greenacre (2006: 68). Greenacre argues that Benzécri’s 
original correction was biased towards an overly optimistic result, that is, explain-
ing more variation than was actually the case. The {ca} package, described in Sec-
tion 2.3.2, includes an option to apply Greenacre’s inertia adjustment. 

Biplots
The concept behind the visualisation in a biplot is quite simple to understand. The 
correspondence analysis has calculated proximity values for the combination of the 
cells across the rows and columns of a contingency table. These can be plotted. Each 
dimension of the plot (there are two dimensions in a biplot) will represent a certain 
percentage of the structuring of the data variation, or ‘inertia’. Plotting a single di-
mension, a simple line (the x-axis), will place the data points on this line at varying 
distances from each other. However, in most situations, this will poorly represent the 
relations between those features. If we add a second dimension, the y-axis, we obtain 
a two-dimensional biplot, typical of correspondence analysis and a range of other 
space reduction techniques. This will, hopefully, accurately represent a great deal of 
the structure in the variation in the data. Mathematically, the number of possible 
dimensions is equal to the number of rows or columns (whichever is smaller) minus 
one. So, to visualise a table with five rows and eight columns, one would need four 
dimensions. The scores of the inertia (or explained variation) are typically given for 
these first two dimensions; the x and y axes of the biplot. Although it is possible to 
take any two of the mathematically possible dimensions and plot these. 

Normally, a combination of the first two dimensions captures a large percentage 
of the variation. Adding a third dimension, the z-axis, produces a three-dimensional 
plot that will even more accurately represent the behaviour of the data. Three-dimen-
sional plots are also possible in R, but are not considered in this chapter. Sometimes, it 
is useful to examine combinations of dimensions one and three or even two and three 
in biplots, especially when the explained inertia is low. For most data sets, though, a 
combination of the first two dimensions offers the most accurate and interpretable 
visualisation of the variation and association in the data. The numerical summary of 
a correspondence analysis will list all the dimensions, but above the third or fourth 
dimension, it is rare that further dimensions represent anything more than a small 
fraction of the variation. In order to completely represent a contingency table, one 
would need all the mathematically possible dimensions. 

Unfortunately, there is a range of terminology that varies from one book to an-
other and even from one R package to the next. A few terms that may arise, especially 
in the numerical summaries of the analysis include: ‘Eigenvalues’, which indicates the 
inertia; the ‘percentages of explained variance’, or simply the percentage of inertia; 
and ‘communalities’, which are the percentages of explained inertia for individual 
rows or columns. If one wishes to work with the technique, there are three excellent 
books that explain its functioning in a clear manner, accessible even to readers with 
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no statistical training. These books are Greenacre (2007) Correspondence analysis in 
practice, Le Roux and Rouanet (2010) Multiple correspondence analysis, and Husson 
et al. (2011) Exploratory multivariate analysis by example using R.

1.3 Choice: Binary and multiple correspondence analysis

Correspondence analysis is, in fact, a family of techniques. There exist at least three 
kinds of binary correspondence analysis and three kinds of multiple correspondence 
analysis. Binary correspondence analysis can be understood as the basis for the mul-
tiple correspondence analysis. It has two advantages over the latter. Firstly, it indi-
cates the percentage of explained variation for each axis. This tells you how well your 
analysis fits the data (how much of the variation/structure the analysis captures). It is 
even possible to add confidence ellipses that estimate statistical significance (see Sec-
tion 2.4.1). Secondly, the contribution of each data point to the structuring of the data 
can be directly discerned by considering its position relative to the two axes, making 
the plots simpler to interpret. 

On the other hand, the advantage of multiple correspondence analysis is that you 
can add more than two factors. The ability to capture the interaction of more than two 
different factors should not be underrated. In linguistics, lexical structure, syntactic 
structure, prosodic structure, argument structure, as well as region, gender, register 
and so on, are all potentially and interdependently relevant in language structure and 
its description. Although it is possible to combine and/or concatenate (stack) factors 
as one normally does for cluster analysis and binary correspondence analysis, doing 
so can lead to overlooking important interactions in the data. This last point is impor-
tant and warrants explanation. 

If we are looking at, for instance, the interaction of tense, aspect, mood and a 
range of near-synonymous verbs, we may propose the hypothesis that the grammat-
ical semantics will indirectly reveal lexical semantic structure. In other words, the 
grammatical semantic profile of each verb will be indicative of the lexical semantic 
structure. To these ends, it is perfectly possible to combine the different grammatical 
factors, giving us usage features such as: feature 1 ‘present tense + indicative + per-
fective’, feature 2: ‘present tense + indicative + imperfective’, feature 3: ‘present tense + 
conditional + perfective’, feature 4: ‘present tense + conditional + imperfective’ and so 
forth. However, if we then want to add further semantic or sociolinguistic features, 
we may miss potentially important correlations. Although combining factors in this 
manner will permit us to perform cluster analysis and binary correspondence anal-
ysis, we will not know if there are interactions between the different factors. We may 
find that, for example, the conditional mood has an important correlation with the 
imperfective aspect in a certain register. This may be interesting in itself, but it may 
also severely bias the results if not accounted for separately. For example, for this 
given register, is the lexical-grammatical correlation observed due to the conditional 
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or the imperfect or a combination? An answer to such a question is more difficult 
to discern in binary analysis. Therefore, there is always a trade-off – binary corre-
spondence analysis gives more ‘reliable’ results and numerical indicators of explained 
variation, but it can struggle to represent the interaction of more than two factors 
simultaneously. 

Other than simple binary correspondence analysis, detrended correspondence 
analysis and canonical correspondence analysis have been developed. Detrended cor-
respondence analysis includes a bias added to the distance matrix calculation. It is 
designed to counter a well-known effect with ‘long’ gradients, called the ‘horseshoe’ 
effect, whereby the data points tend to form an arch. The effect is occasionally visible 
in plots, but any experience with correspondence analysis should avoid misinterpret-
ing results because of it.3 It should be noted that Greenacre (1984: 232) is sceptical 
about detrended correspondence analysis and it does not enjoy wide currency. It is, 
nevertheless, straightforward to perform in R.4 

Canonical correspondence analysis, also termed constrained correspondence 
analysis, is popular in the life sciences, but is also directly relevant to linguistics. In a 
given study, it is perfectly common to be dealing with two different kinds of variables. 
Some categories interact with each other, but all relative to a different kind of category. 
For example, aspectual structure interacts with Aktionsart and tense in complicated 
and close ways. The role of, for example, register, in their interaction is of a different 
nature. We may not want to have the correspondence analysis treating the register 
features of conversation, news press and literature equally ‘mixed’ in with aspectual 
and temporal features. We can, therefore, treat the register dimension as an ‘external’ 
factor and the grammatical semantics as the ‘internal’ factors. The correspondence 
analysis then knows that we are actually interested in the internal factors and it ac-
cordingly attempts to map that space relative to the structure of the other. This results 
in less explained inertia overall, but (hopefully) more explained inertia for the factor 
that is the object of study.5

Multiple correspondence analysis techniques are an extension of binary corre-
spondence analysis for the treatment of multi-way tables (binary correspondence 
analysis is restricted to ‘normal’ two-way tables). In the R sessions below, we consider 
three kinds – indicator matrix multiple correspondence analysis, Burt matrix multiple 
correspondence analysis, and joint multiple correspondence analysis. 

3. See Greenacre (2007: 127–128) for an explanation of the horseshoe effect.

4. The package needed is {vegan} and the function is decorana. Oksanen (2006) has writ-
ten a clear tutorial for the {vegan} package that explains the needed R command and offers 
examples. 

5. With the package {vegan} and the function cca, it is straightforward to perform. Again, 
Oksanen (2006) offers an R tutorial on the possibilities. Canonical correspondence analysis is 
also performed by the {anacor} package, explained in De Leeuw and Mair (2008).
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Indicator multiple correspondence analysis is sometimes called homogeneity 
analysis (Gifi 1990; De Leeuw and Mair 2009a). Essentially, this technique ‘combines’ 
a binary correspondence analyses using what is called a ‘matrix of indicators’. Despite 
mathematical differences, its results are very similar to Burt matrix multiple corre-
spondence analysis. Indeed, Greenacre (2007: 141) compares the two and concludes 
that there is no difference in the visualisation of the results, but does note that the 
Burt matrix produces more ‘optimistic’ percentages of inertia. However, for multiple 
correspondence analysis, it must be remembered that the percentages of explained 
inertia cannot be interpreted because they severely underestimate the representative 
quality of the biplot map. The Burt matrix multiple correspondence analysis is the 
most commonly implemented in R.

A third type of multiple correspondence analysis is based on the Burt matrix 
method and has been termed joint correspondence analysis. Greenacre (2006: 68; 
2007: 145) argues that it is superior both in terms of the explained inertia and in the 
accuracy of the visualisation. It works by restricting the analysis to the cross-tabula-
tions that typically contain the correlations of interest, those that explain the inertia. 
Greenacre (2007: Ch. 19) explains the technique in terms accessible to non-specialists. 

2. Performing and interpreting correspondence analysis in R

Before we begin with the application per se, we must cover a few general questions 
that are relevant to every correspondence analysis. The first important question is – 
what to look for. There are four issues: ‘fishing’, over-simplicity, over-complexity, and 
data sparseness. Let us briefly consider each in turn.

By fishing, we mean the arbitrary (or near-arbitrary) selection of factors in the 
hope that one will find correlations. Correspondence analysis is a tool for identifying 
correlations, a tool that needs to be used in a reasoned fashion. There is no point in es-
tablishing correlations between the use of language features that bear no interpretable 
correlation in reality, or worse, bear an interpretable correlation, but are just a result 
of a few chance occurrences. In Section 1.1, the metaphor of an archaeologist digging 
was used to explain this point: by digging everywhere, it is sure that something will be 
found, but the chances of finding irrelevant things increase exponentially. 

Over-simplicity is less serious a problem, but still must be borne in mind. There 
is no use in using correspondence analysis to identify a correlation that a simple pie 
chart or histogram, combined with a test for significance, would do even better. Sim-
ilarly, obvious correlations can dominate results at the expense of less obvious, and 
therefore, more interesting results. For example, since parenthetical uses of verbs are 
typically in the first person, including grammatical person and parentheticality in a 
correspondence analysis will primarily reveal an obvious, or trivial, association. The 
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problem is, if these two factors are amongst a more complex range of factors, the obvi-
ous association could ‘override’, or ‘hide’, other associations. Although it is sometimes 
necessary to include such obvious correlations in an analysis (because one is seeking 
structures in other parts of the data), if it is possible to avoid doing so, then it should 
be avoided. Simply put, obvious correlations run the risk of ‘hiding’ the more inter-
esting results. In other words, the plot will identify what is most strongly correlated 
instead of the subtler, yet analytically more important, correlations. 

Over-complexity occurs in binary correspondence analysis when using concat-
enated tables (see Section 2.2.3 below) and in a multiple correspondence analysis 
when too many factors are examined simultaneously. For example, there is obviously 
no point analysing, simultaneously, 22 factors, each with 16 features, even if one has 
thousands of examples. Without even considering the impossibility of accounting for 
the variation (inertia), in such a dataset, the results would not be interpretable for the 
simple reason that the visualisation of so many factors becomes impossible to deci-
pher. Moreover, the chance of ‘false’ associations increases dramatically with the more 
variables and features that are considered simultaneously. There is no steadfast rule, 
but thinking about how the analysis works and being realistic about its limitations are 
the safest ways to avoid the problem of over-complexity. 

One way to avoid such over-complexity is to work with subsets. Subsets may be 
logical divisions within the data: for example, examining two dialects independently 
from one another or examining two lexemes or grammatical constructions separately. 
Similarly, certain features or factors can be combined. As long as the choice is rea-
soned and reported, it can help to simplify the interactions that the analysis is trying 
to explain. 

This principle extends to data sparseness and ‘small cells’. As a rule of thumb, one 
aims to have at least ten examples in each cell (the count of co-occurring features) 
of the cross-tabulated matrix (see below, this section). Obviously, this is not always 
possible, but cells of less than eight tend to cause distortions in the analysis. One may 
find that the analysis is ‘trying so hard’ to account for some relatively infrequent use 
that the important associations are not represented. A response to this problem is 
to leave out the examples (the rows in a flat data-frame, see below, this section) that 
contribute features only occurring a few times. First performing the correspondence 
analysis on the full set of data and then gradually taking out these small cells (rows 
of infrequent examples) is a good heuristic. Not only will it result in a better final 
analysis, the exploratory nature of correspondence analysis will help you to better 
understand the data and the correlations within them. The numerical output of binary 
correspondence analysis can be very helpful in identifying such problems. Using the 
numerical output, one can quickly see which data points are being poorly represented. 
This is explained in Section 2.3.1.
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Let us now turn to the computation and interpretation of correspondence anal-
ysis in R. Some common packages for correspondence analysis include: {MASS}, 
{ca}, {languageR}, {anacor}, {homals}, {FactoMineR}, {vegan}, {ade4} and  
{pamctdp}. Unfortunately, for reasons of brevity, we restrict the demonstration to a 
small selection of functionalities in the first four of these packages. However, refer-
ences to further information and tutorials on each are offered. 

Each package is a suite of commands for performing correspondence analysis. 
They have different options and possibilities. The program R, works with functions, 
such as the function to read a table, to plot results of an analysis and, of course, to per-
form a statistical analysis. In simple terms, the functions are the commands that tell 
R what to do. Each function also has a set of ‘arguments’. These arguments are the ‘op-
tions’ that R should take into account in executing the command. Moreover, keeping 
a record of what you have done is vital in learning to use the program. There are many 
additions in R for keeping your working history and also for storing the functions you 
use often. However, when just beginning, it is perhaps simplest to use a text file and 
to simply ‘copy’ and ‘paste’ to and from R. Also, at the end of an R session, it is wise 
to save the history (what you have done) either within R or in a separate text file. This 
will help you to remember the steps you took the next time you perform an analysis. 
Further explanation on how to use R can be found in van de Weijer and Glynn (this 
volume, 343–364).

In the R sessions below, after each line of command, another short line is added, 
following the # sign. This sign indicates that the program R should ignore what fol-
lows it and not try to interpret it as arguments belonging to the function. It is standard 
practice to explain command lines after such hash (#) signs. 

For the purposes of explaining how to perform and interpret the analyses in R, 
we will use artificial data. Let us take a set of near-synonymous verbs in an imaginary 
language. In this language, let us say, there are three mental predicates think, believe, 
and suppose, and three communication predicates, say, speak, and talk, which can be 
used figuratively to also indicate epistemic stance, just like the mental predicates. We 
take 575 occurrences of the verbs, more or less equally distributed. Correspondence 
analysis does not require equal distribution in such a situation, but we want to have 
as many examples as possible of each form, so making a balanced selection is the 
best way of achieving this. The imaginary language possesses a three-way distinction 
in the aspect-mood system, distinguishing between ‘Perfective’, ‘Imperfective’ and 
‘Modal’ forms. Each of the examples is analysed for this grammatical category. The 
examples are also analysed for the grammatical person of the verb and the semantic 
type of the indirect object. Table 1 illustrates the kind of results one expects from such 
an analysis. 

Before we start the R session, an important aside must be made. There are two 
different data formats that the R functions use. It is crucial that the data is in the 
correct format. Details on loading the data can be found in van de Weijer and Glynn 
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(this volume, 343–364), but this fact is essential enough that it is worth repeating. We 
can call one format the flat ‘data-frame’ and the other the numerical ‘cross-tabulation’ 
(or contingency table). The data-frame is typically what one obtains after annotat-
ing (coding) linguistic examples in Excel, Filemaker or some database application. 
The cross-tabulation is a result of calculating, or numerically summarising, the da-
ta-frame. This can be done in Excel with the ‘pivot table’ option or by using a com-
mand in R, described in van de Weijer and Glynn (this volume). The easiest way to 
understand the two different formats is by way of example. Table 1 is an example of a 
data-frame; typically it would be in a spreadsheet or in a text file with tab delimited 
columns. Table 2 is typical of a cross-tabulation. Note that Table 2 only cross-tabulates 
columns two and three: “Gram. Category” by “Verb”. Again, van de Weijer and Glynn 
(this volume) offer more information on the different formats and how to convert 
data from one format to another. Once we have our data and we have the two relevant 
formats of the data, we can begin the correspondence analysis. Finally, note also that 
the data, R sessions and commands (with more detailed explanations) can be down-
loaded from http://dx.doi.org/10.1075/hcp.43.17gly.additional. 

Table 1. Example of flat data-frame

Example Verb Gram. category Person Ind. obj. semantics

example1 think Perfective 1st Human
example2 suppose Modal 3rd Concrete_Thing
example3 suppose Perfective 3rd Abstract_State_of_Affairs
example4 believe Imperfective 1st Concrete_Activity
example5 say Imperfective 3rd Abstract_State_of_Affairs
example6 talk Modal 1st Concrete_Thing
example7 suppose Imperfective 1st Concrete_Activity
example8 speak Perfective 1st Human
to 575 examples … … … …

Table 2. Example of a numerical cross-tabulation contingency table

believe think suppose say speak talk

Perfective 32 28 22 16 20 14
Imperfective 24 24 34 42 49 44
Modal 44 52 48 29 26 27

http://dx.doi.org/10.1075/hcp.43.17gly.additional
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2.1 R package {MASS}

The package {MASS} (Venables and Ripley 2002) comes pre-installed and so it only 
needs to be loaded. It has simple, but effective, functions for both binary corre-
spondence analysis and multiple correspondence analysis. The first step is to load the 
package:

  > library(MASS)

2.1.1 Binary correspondence analysis in MASS
Data must first be loaded in the numerical cross-tabulated format. We take the 
cross-tabulation in Table 2. The first command line below loads data from a text file 
containing a cross-tabulation. There are three ways of loading such data into R; we 
will use the choose.file() function.

  > data.xtab <- read.table(file.choose(), 

    header= TRUE, sep=“\t”, row.names= 1)

    # Loads data from text file containing cross-tabulation

    # e.g.: table2.txt, downloadable from 

    http://dx.doi.org/10.1075/hcp.43.17gly.additional

    # Specifies that the columns have labels, or ‘headers’.

This command line loads the data into R, calls it ‘data.xtab’ and specifies that the first 
row in the table is the column labels, or headers (header= TRUE). It also assumes 
that any blank space, tab or otherwise, is the sign of a new field. You can use func-
tion sep= “ ” to specify how the columns are separated. This is necessary if you 
have labels with blank spaces in them. If you are exporting data from a spreadsheet 
or database, then the columns are most likely to be tab delimited, in which case add 
the argument sep= “\t”. When first beginning, it is perhaps easiest to make sure 
there are no blank spaces in your labels and let R guess the structure of the table. The 
argument row.names= 1 specifies that the first column is the labels for the rows. 
This last argument is needed when loading a numerical cross-tabulation, but not for 
the flat data-frame. 

The function for performing a binary correspondence analysis in the package 
{MASS} is corresp.

  > ca_analysis <- corresp(data.xtab, nf= 2)

    # performs correspondence analysis on ‘data.xtab’

  > plot(ca_analysis)

    # plots results of ‘ca_analysis’

Although the graphic options in R are excellent, the {MASS} package offers only a 
simple set of possibilities. To the last line of code above (plot(ca_analysis)), we 

http://dx.doi.org/10.1075/hcp.43.17gly.additional
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can add the graphical ‘arguments’ which determine the appearance of the plot.6 For 
example, the argument cex changes the size of the font, the argument col speci-
fies the colours, and xlim and ylim ‘zoom’ the plot by delimiting the x and y axes. 
These arguments should be added ‘inside’ the plot command, as shown in the example 
below:

  > plot(ca_analysis, col= 1, cex= 1, 

    xlim= c(-.225,.375), ylim= c(-.4,.4)) 

    # plots results of ca_analysis, in black, at font 

    size 1, # ‘zoomed’ in on x and y-axes. See Figure 1. 

The col argument can specify a range of colours by name “red”, black”, “blue” or by 
numbers, “1”, “2”, “3” etc. The argument cex takes a number that indicates the type 
size (1 = is default, 1.2 is larger, 1.3 larger still, and 0.8 smaller, and so forth).

Zooming can be tricky at first, but becomes simpler with practice. The plots pres-
ent numbers on the x and y axes. These numbers show the distance from the centre 
of the plot. The x and y axes can be ‘limited’ both in the negative and in the positive 
range with the following arguments xlim= c(-.05,.05), ylim= c(-.05,.05). 
Adding this string to the plot function will make the cut-off points for the plot -0.05 
and +0.05 on the x-axis and –0.05 and +0.05 on the y-axis. Change those numbers to 
delimit, and therefore ‘zoom’, the plot. Experimenting with the zoom function will 
allow you to get a more legible plot. In Figure 1, the data points were positioned to 
make maximum use of the space, that is, to make sure that the entire box was used to 
display the ordination of the data points.

The data submitted to this analysis are simple, but the result will allow us to un-
derstand the principles in interpreting correspondence biplots. The dispersion of the 
data points represents the variation of the co-occurrence of the different usage fea-
tures – here, six verbs (columns) and three grammatical categories (rows). Proximity 
and distance represent degrees of association between the different features. The cen-
tre of the plot, indicated by the numbers on the x and y axes and by the cross in the 
centre, divides the plot into quadrants. This helps identify association. 

The corresp function in {MASS} does not produce the most attractive plots, but 
since it is the simplest to perform and comes pre-installed in R, we will explain the 

6. Saving plots is an important, yet often side-lined, element to using R. In Mac OSX, plots 
are saved in the vector format .pdf. This means one has perfect resolution magnified to infinity. 
Under Mac OSX, in current versions of MSWord, importing with the Insert menu (not ‘cut 
and paste’) will maintain this perfect resolution in an MSWord document. Under Windows, 
depending on the version, MSWord does not accept .pdf or automatically converts it with poor 
quality output. Under Windows, plots should be saved as .png. Although the quality is not 
comparable to .pdf, it is acceptable.
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principles of interpretation with it. In the following sections, you will see how more 
sophisticated, yet still simple to use, packages produce superior biplots.

In Figure 1, we see two distinct groupings of the verbs, distinguishing the mental 
predicates and the communication predicates. The verb suppose lies between the two 
groups, though clearly still on the same side of the plot as the other mental predicates. 
From this, we know that although it behaves like a mental predicate, its use is closer to 
the communication predicates. We also see that although the mental predicates form 
a distinct group, they are also distinguished along the vertical axis. The items believe 
and think are distinguished by the grammatical categories of Modal and Perfective. 
Although the distance between think and believe is relatively small, they are in differ-
ent quadrants of the plot, and most importantly, the grammatical categories are on the 
‘far side’ of the lexeme data points relative to each other. This shows the association 
to be distinctive. If the data points Modal and think were interchanged, then believe 
would be distinctly associated with Perfective, but think would only be associated 
with Modal, not distinctly so. It is for this same reason that we know there is a distinct 
association between the communication predicates and the Imperfective. The data 
point for the Imperfective lies on the ‘other side’ of the communication predicates 
data points relative to the mental predicates. This shows the distinctiveness of the 
Imperfective use with this group.

A note should be made about the scales printed on the axes. They are not inform-
ative on their own, but help one to gauge relative distance. This is especially important 
when plots are not square, but are elongated or stretched to permit the representation 
of all the data points. In Figure 1, we have a slightly unusual situation where the plot 
is skewed. In this instance, it is not interfering with the results, but if the cloud of data 
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points were more dense or the array more complex, this would have to be taken into 
account.

We can summarise the interpretation of the plot as follows: 

For the mental predicates
– Distinct usage in the aspect-mood system, relative to the communication 

predicates 
– Within the mental predicate group: believe is distinctly associated with the Per-

fective; think is distinctly associated with Modal; suppose is associated with the 
Modal, but its use is also relatively close to that of the communication predicates.

For the communication predicates
– Distinct in usage from the mental predicates due to their Imperfective profiling

The numerical output for the {MASS} package is not helpful at this stage. We will ex-
amine the numerical output below in Section 2.3.1. 

2.1.2 Multiple correspondence analysis in MASS
This function is delightfully simple and powerful, but therein lies its danger. It is sim-
ple because one uses the data from a flat data-frame (such as the ‘raw’ data in an Excel 
file) which does not need to be converted to a contingency table, and also because two 
simple commands perform the analysis and plotting. It is powerful because (theoret-
ically) one can add many variables to the analysis and perform complex multivariate 
analysis. Although this technique and these functions are excellent, care must be tak-
en. It becomes increasingly difficult to interpret the results of the analysis as one in-
creases the number of variables being treated. What is more, it becomes increasingly 
difficult to obtain reliable results. 

For demonstration purposes, let us add some more fictitious data. Column 5, in 
Table 1, shows the semantic type of the indirect object of the utterances. We can add 
this factor and perform a multiple correspondence analysis. It will show the interac-
tion of three variables, the grammatical category of aspect – mood, the lexemes, and 
the semantic type of the indirect object. 

The function mca performs a multiple correspondence analysis. As mentioned 
above, for this function, there is no need to produce a numerical contingency table; 
the function accepts the flat data-frame as the input format of its data:

  > data.frm <- read.table(file.choose(), sep=“\t”, 

    header= TRUE)

    #loads data from text file containing data-frame

  > mca_analysis <- mca(data.frm, abbrev= T)

    # performs the multiple correspondence analysis

  > plot(mca_analysis, rows= F, col= 1)

    # plots results of mca_analysis, see Figure 2 
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We add abbrev= T (T for ‘true’) to the mca function. This tells the function not to 
include the factor labels. Also, note row= F (F for ‘false’); this tells the plot function 
not to add the row numbers (that is, example numbers in linguistic analysis) to the 
plot. It is sometimes interesting to plot the row numbers in order to determine which 
actual examples are causing the interactions visualised in the plot. As for the factor la-
bels, if one has features whose labels are the same for different factors, then one needs 
to add the factor labels to distinguish them on the plot. To activate these options, 
exchange F and T in the command line.

Figure 2 presents the results of the multiple correspondence analysis of the three 
factors. Firstly, you will notice that some of the data points overlap, which can cause 
problems for interpretation. This is a natural result of visualising association through 
the proximity of data points, yet it means that often one must enlarge plots (after hav-
ing saved them as image files) or zoom in on them in R in order to discern what data 
points are overlapping. These, in turn, must be explained and described in further 
detail when reporting results. There exists a package, {FactoMineR}, which has an 
option for so-called dynamic graphing that allows one to displace the labels (as op-
posed to small data points) interactively so that they do not overlap. Details are given 
in Section 2.5. It is this package that was used to make the plots in descriptive studies 
presented in the first section of this book.

Interpreting the plot of a multiple correspondence analysis can be complex. In 
this plot, we have a multidimensional space that has been conflated to two dimen-
sions. This means that data points may appear close to each other but, in fact, are 

–0.02 0.00 0.02 0.04

0.
03

0.
02

0.
01

0.
00

–0
.0

1
–0

.0
2

–0
.0

3

ImperfectiveModal

Perfect

say

speak

suppose

talk

think

Abstr_SoA
believe

Abstr_thing

Cncrt_activty

Cncrt_thing

Human

Figure 2. Multiple correspondence analysis, function mca, package {MASS}



 Correspondence analysis 459

placed far apart on the oblique dimension, back ‘into the page’, as it were. Caution, and 
a little experience, makes interpreting such plots reasonably straightforward. Howev-
er, as one increases the numbers of factors to four or five, the plots can only be used as 
a rough guide and one must return to the data to check every association identified. 

In Figure 2, imagine the plot divided diagonally, horizontally and vertically. Lo-
cating the centre at the intersection of 0.00 and 0.00, we move out to see the three 
grammatical features, Imperfective, Perfective, and Modal, dividing up the dispersion 
of the plot. Once again, the Imperfective dominates the right side, where two of the 
communication predicates are located, talk and speak. With them is the indirect ob-
ject semantic feature of Concrete Thing (Cncrt_thing). The position of the Imperfec-
tive data point, between the centre and the two communication predicates, suggests 
that having added the semantic features makes this less distinctly associated with the 
communication predicates. This interpretation would still see the Imperfective as a 
characteristic feature of the communication predicates, being located in the right half 
of the plot, but would see its distinctiveness being lessened. Although at first sight, 
this may seem reasonable, herein lies the trick of interpreting multiple correspond-
ence analysis.

Another interpretation, and one more likely to be accurate, is that the Imperfec-
tive is still highly distinctive of the communication predicates, but it is being drawn to 
the centre by the third communication verb, say, which is now on the bottom left side 
of the plot. It is probable that there is a multiple interaction here along this dimen-
sion of use. Adding the indirect object semantics has separated say from the group of 
communication predicates. Seeing that its position on the plot almost overlaps with 
the indirect object semantic feature of Human, but also that these two features clus-
ter together a long way from the centre of the plot, we can safely suppose that say is 
highly associated with a Human indirect object. We also know, from the previous 
analysis, that the Imperfective is highly associated with say. In this situation, a likely 
interpretation would be that both the Imperfective and the Human indirect object are 
associated with say, but that the Human Indirect object is ‘pulling’ the lexeme away 
from its Imperfective – communication verb cluster, leaving the Imperfective data 
point stretched between say and the two other lexemes, speak and talk. This happens 
because the Human indirect object must be highly associated with some other feature 
and/or highly disassociated with the other communication predicates. If this were not 
the case, it too would group with the Imperfective on the right of the plot. This inter-
pretation is complex, but rich. It is also reasonably clear, if one has some experience 
in interpreting correspondence biplots. We will return to some of these complex as-
sociations below and reconsider these relations using different packages and different 
ways of handling the data. 

Other findings include the distinct association of believe and the indirect object 
semantics of Abstract State of Affairs (Abstr_SoA). Also, the position of Concrete 
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Activity (Cncrt_activity) as object semantics, lying between say and think/suppose, 
shows that these three lexemes share this feature, yet otherwise they are distinct.

Despite this complexity, if we step back and return to our research question – 
the near-synonymy of the lexemes – we have a clear and coherent picture. The two 
sets of verbs, communication and mental, are still distinct. For the mental predicates, 
believe is distinct relative to the communication predicates. For the communication 
predicates, say is less so, relative to the mental predicates. This gives us an uneven 
continuum from talk and speak to say, which bridges the use with the mental verbs 
think and suppose. At the very end of this continuum, believe is distinctly distant from 
the communication predicates in its use. 

Importantly, we know what characterises this continuum. At one end, the com-
munication predicates, speak and talk, are associated with Concrete Things as indirect 
objects and with the Imperfective aspect. Although still associated with Imperfec-
tivity, midway on the continuum, say is more associated with the indirect objects 
of Concrete Activity and Human. At this point, we meet the mental predicates with 
suppose and think sharing an association with say of the object type of Concrete Ac-
tivity. These lexemes, think and suppose, are central to the mental predicate cluster 
determined by Abstract Things as indirect objects and the Perfective aspect. Finally, 
believe, also relatively close to the other mental predicates, is quite distinct due to its 
association with Abstract States of Affairs as object semantics. 

In this fictitious description of near-synonymy, we have shown which verbs are 
similar and which verbs are distinct. Most importantly, we have shown why this is 
the case; what usage features are responsible for the similarities and differences. With 
some experience, such an interpretation of the results is reasonably clear. Of course, 
how these results inform the interpretation of language structure remains open to 
debate. 

2.2 R package {languageR}

The {languageR} package, developed by Baayen (2011), has an impressive range 
of statistical options. However, for correspondence analysis, it is restricted to binary 
analysis. To these ends, it is simple to use and has an agreeable graphical output. The 
application is explained in Baayen (2008: 128–136). The package firstly needs to be 
installed and then loaded separately when used:

  > library(languageR)

Depending on your version of R and the operating system, it may require a range of 
other packages to be installed and loaded before it can be loaded. The R terminal will 
give you instructions to follow in case this happens. 
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2.2.1 Binary correspondence analysis in languageR
The function for binary correspondence analysis is corres.fnc. It expects the data 
to be inputted as a numerical cross-tabulation.

  > data.xtab <- read.table(file.choose(), header= TRUE, 

    sep=“\t”, row.names= 1)

  > data.t <- t(data.xtab)

    # transposes data. 

    # Optional step, added here to improve plot legibility

  > ca_analysis <- corres.fnc(data.t)

  > plot(ca_analysis, ccex= 1.2, rcex= .85) 

    # plots ca_analysis results with different font sizes 

    # for the two axes. See Figure 3.

  > title(“Lexical Variation of Grammatical Categories”, 

    cex.main= .95, sub= “package - languageR, function - 

    corres.fnc”, cex.sub= 0.85)

    # Adds titles to the plot, specifies font size

Firstly, note that the cross-tabulation was transposed, or inverted (data.t <-  

t(data.xtab)). This is simply because some of the data point labels were ‘hanging’ 
off the edge of the plot, and transposing the table inverts the plot and thus the direc-
tion of the labels, improving legibility. The title function should be self-explanato-
ry. It is entered after the plot line and adds the labelling to the plot. It works for most 
packages. There are a great many more functionalities with plotting and labelling that 
we do not cover here. In R, if one wishes to find what arguments (options) are availa-
ble for a given function, one should type a question mark and then the function (e.g.: 
?title); a help page will appear with all the arguments available. 

Interpreting Figure 3 should be straightforward, the only important difference to 
Figure 2 being the inversion. It is superior in its representation to the plot produced 
in {MASS}. The four quadrants are clearly indicated and the relationship between the 
different data points much more clearly depicted. 

An important addition to this plot is the percentages indicated on each of the 
two axes. These percentages indicate the amount of inertia (see Section 1.2) that is 
explained by the first two dimensions, the plotted dimensions. It is an indication of 
how well the analysis is able to account for the variation in the data and is normally re-
ported. Low inertia scores do not mean that the analysis is not valid, but it does mean 
that extra care should be taken in interpreting the plot. It is difficult to suggest a score 
that represents a ‘good’ level of explained inertia because it depends on the complexity 
of the data. Normally, in simple binary correspondence analysis, the combination of 
the first two dimensions should be over 75%. This will often be lower for canonical 
correspondence analysis and, as stressed above, for multiple correspondence analysis, 
the score is not interpretable.
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2.2.2 Chi-squared test for significant variation
Let us make a brief aside. In Gries (this volume, 365–390), the Chi-squared test was 
explained. We can apply it here to make sure that there is, indeed, significant variation 
between the different lexemes. The function is chisq.test and it expects the data to 
be a numerical cross-tabulation. 

  > x2.test <- chisq.test(data.xtab, correct= F)

  > x2.test 

  data:  data 

  X-squared = 40.6513, df = 10, p-value = 1.301e-05

This shows there is significant variation between the lexemes. We can then call the 
Pearson residuals to see which categories are causing the most variation. Again, this is 
explained in Gries (this volume, 365–390).

> x2.test$res

           believe   think     suppose   say       speak     talk

Perfect    1.887480  0.844261 -0.383690 -0.888823 -0.387302 -1.24804

Imperfect -2.236471 -2.433997 -0.837797  1.599814  2.195817  2.104913

Modal      0.748989  1.739817  1.114179 -0.888356 -1.855656 -1.108766
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We see from the Pearson residuals that the Imperfective uses of speak and talk and the 
lack of Imperfective uses of think and believe are the most important. We can bear this 
in mind when interpreting the plots. Looking at Figure 3, we see this fact represented 
visually and clearly so.

2.2.3 Concatenating tables and combining categories
We have, until now, worked with very simple data. Although correspondence analysis 
can help us find correlations in such data, its true strength is revealed when applied to 
more complicated and multidimensional data. In Table 1, we presented the imaginary 
feature analysis: there were four columns after the examples – lexeme, grammatical 
category, grammatical person, and indirect object semantics. We saw, in Section 2.1.2, 
that a multiple correspondence analysis can help examine more than two factors si-
multaneously, but we also saw the complexity in interpretation that arises in some 
data sets. Although multiple correspondence analysis is necessary for finding correla-
tions between the factors, there are two other ways of handling data that permit some 
exploration of different dimensions of use. 

First of all, using the pivot command in Excel, one can concatenate, or ‘stack’ ta-
bles. One literally generates two-dimensional tables and puts them together in a row, 
creating one long table. For instance, we can take the data for verb and grammatical 
category and, using the so-called ‘pivot’ function, produce a cross-tabulation. Then we 
repeat the operation for the verb and indirect object semantics. This gives us two ta-
bles we can join and submit to a binary correspondence analysis. However, it is much 
simpler to stack tables in R. A function is given in van de Weijer and Glynn (this vol-
ume, 343–364) which automatically generates stacked contingency tables in R.

Table 3 is an example of such stacked, or concatenated, results. It is perfectly ac-
ceptable to tabulate data in this manner. However, it must be remembered that when 
used in multivariate statistics, stacking like this can conflate conceptually different 
dimensions of language structure. In the instance here, the indirect object seman-
tics and the grammatical categories of aspect and mood have been combined in such 
a way that any relations between these different linguistic dimensions are lost. This 

Table 3. Example of concatenated cross-tabulation

Verb Imperfect Modal Perfect Abstr.
SoA

Abstr.
thing

Cncrt
activity

Cncrt
thing

Human

believe 24 44 32 41 37  8  5  9
say 42 29 16  5 25 17  8 32
speak 49 26 20  5 22  8 51  9
suppose 34 48 22  5 62 15 16  6
talk 44 27 14  1  9  4 68  3
think 24 52 28 15 37 16 13 23
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combination means we will only be able to see the interaction of these categories rela-
tive to the different verbs, not the interaction between them. If we are only interested 
in the verbs and know there are no important interactions between indirect object 
semantics and mood-aspect, then this poses no problems.

Table 4 shows another way of adding more information to a two-way table. Here 
we have combined two different factors. In Table 1, grammatical person and verb were 
listed as separate columns. However, semantically, it is perfectly reasonable to com-
bine these two factors into one, a verb-person category. To obtain the new combined 
factor, ‘sort’ the two columns in Excel and add a new empty column, and create the 
new combined factor using the ‘copy-paste’ and ‘change all’ functions in Excel. Table 4 
shows this combined factor of verb and person added to the cross-tabulation. 

A point of warning should be made about data sparseness. As we add more com-
plexity to the tables, we obtain smaller cells. The more different things we consider 
simultaneously, the ‘thinner’ the data becomes. As a rule, cells below a count of 10 
should be avoided. In practice, at least when dealing with manually coded data, this 
rule is broken. As long as care is taken when considering the plots and it is remem-
bered that this is only an exploratory technique, some leeway on this front can be tol-
erated. However, small cells should always be reported. The numerical output, which 
we consider below in Section 2.3.1, also helps one gauge the reliability or ‘accuracy’ 
of a data point on a biplot. Let us now consider these tables submitted to binary cor-
respondence analysis.

Applying the same command line as that used to produce Figure 3 to the data 
presented in Table 3, produces the plot in Figure 4. Although the plot is inverted, the 
dispersion of the data points has shifted little, and the graphical representation in this 
package is superior; the results are the same. Indeed, the fact that the Imperfect is 

Table 4. Example of concatenated cross-tabulation with combined factors

Verb +
Person

Imperf. Modal Perfect Abstr.
SoA

Abstr.
thing

Cncrt
activity

Cncrt
thing

Human

believe 1st Prs 18 31 12 28 23  4  3  3
believe 3rd Prs  6 13 20 13 14  4  2  6
say 1st Prs 42 15  4  3 16 10  8 24
say 3rd Prs  0 14 12  2  9  7  0  8
speak 1st Prs 44 13  9  4 16  5 36  5
speak 3rd Prs  5 13 11  1  6  3 15  4
suppose 1st Prs 28 10  0  0 22  5  9  2
suppose 3rd Prs  6 38 22  5 40 10  7  4
talk 1st Prs 37 10  8  1  7  4 42  1
talk 3rd Prs  7 17  6  0  2  0 26  2
think 1st Prs 21 11  8  3 20  3  6  8
think 3rd Prs  3 41 20 12 17 13  7 15
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being ‘stretched’ between two quadrants of the plot is clearer. Note also that the data 
point for Abstract States of Affairs lies just off the plot, distinctly and highly associated 
with believe, just as in Figure 2. It is also noteworthy that the explained inertia of the 
first two dimensions is 85% (dim 1: 63% + dim 2: 22.4%). This shows that the analysis 
is stable and we can interpret the plot with some confidence.

Figure 5 visualises yet a more complex data set, presented in Table 4. In these 
data, we have added the grammatical person to the verbs as well as having concate-
nated the grammatical categories and the indirect object semantics. The added com-
plexity reduces the amount of explained variation, which is now just over 72% for the 
first two dimensions. This is still a relatively high figure and assures us that the plot 
remains stable, despite the added complexity.

We see that speak and talk behave in a similar manner to what we saw above in 
Figure 4. It seems that the addition of the variation in grammatical person does not 
affect their interaction with the aspect-mood and object semantics to any great extent. 

However, the behaviour of say, which we saw was distinct in Figure 4, has been 
explained. The 1st person say is found on the Imperfective/communication verb side 
of the plot, but the 3rd person usage of say, although somewhat hidden beneath an-
other label, is found right in the centre of a mental predicate cluster, along with the 
Modal and Perfective profilings. We now know that it was a simplification to under-
stand say as being between the communication predicates and the mental predicates. 

–0.5 0.0 0.5 1.0

0.
6

0.
4

0.
2

0.
0

–0
.4

–0
.6

Imperfect

Human

Cncrt_activity

Abstr_thing

Cncrt_thing

Modal

Perfect

SAY

THINKSUPPOSE

SPEAK

TALK

BELIEVE

Fa
ct

or
 2

 (2
2.

4%
)

Factor 1 (63%)

–0
.2

Figure 4. Binary correspondence analysis, data from Table 3, function corres.fnc, 
package {languageR}



466 Dylan Glynn

It is, in fact, only the 3rd person uses that behave similarly to the mental predicates. 
Moreover, we see now that believe has joined the mental predicate cluster, which sug-
gests that it was never so distinct from the mental predicate cluster as a whole. Instead, 
we see that it was just distinct from the 1st person uses of say, from which it was being 
pushed away in the visualisation. Finally, suppose in the 1st person has shifted right 
across to the Imperfective, completing the picture of a continuum between the two 
groups of verbs, where suppose in the 1st person behaves like a communication verb 
and say in the 3rd person like a mental predicate. Adding the extra dimensions of use 
has clarified the interaction of the verbs. It is precisely this kind of multivariate com-
plexity that correspondence analysis is designed to capture.

If the reader wishes to perform these analyses, the command line presented in 
Section 2.2.1 will produce the plots. 

2.3 R package {ca} 

The package {ca}, developed by Nenadić and Greenacre (2007) and Greenacre and 
Nenadić (2010), is another commonly-used package for performing binary and mul-
tiple correspondence analysis. The package does not come with the R installation and 
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must be downloaded separately using the package installer. It is described in detail in 
Greenacre (2007: 232–240). Before we begin, load the package:

  > library(ca)

This package offers a wealth of possibilities, most of which go beyond our discussion. 
We will focus on its numerical output and the various options for multiple corre-
spondence analysis that it includes. 

2.3.1 Binary correspondence analysis in ca
As before, the data must be loaded in a cross-tabulated matrix.

  > data.xtab <- read.table(file.choose(), header= T, 

    sep=“\t”, row.names= 1)

  > ca_analysis <- ca(data.xtab)

  > plot(ca_analysis, col= 1)

Due to the limitations of space, the plot of this analysis is not included. It presents the 
same information as above. However, the numerical output in {ca} is comprehensive 
and informative and so we will focus on this. Although most of the output does not 
need reporting, as one becomes more experienced with correspondence analysis, the 
mass and explained inertia for the individual rows and columns can help one inter-
pret unusual patterns, especially with data sets more complex than those we are using 
here. There are two sets of numerical output. The first is obtained by simply typing 
the object of the ca function. We called this object ca_analysis. This output is 
not presented here because it is quite voluminous. The second numerical output is 
obtained by asking for a summary of the results of the analysis. The summary below 
is of the analysis presented in Figure 5. 

> summary(ca_analysis)
Principal inertias (eigenvalues):

 dim    value      %   cum%   scree plot               
 1      0.252400  51.5  51.5  *************************
 2      0.103030  21.0  72.5  **********               
 3      0.069058  14.1  86.6  *******                  
 4      0.043973   9.0  95.6  ****                     
 5      0.016743   3.4  99.0  **                       
 6      0.004762   1.0 100.0                           
 7      00000000   0.0 100.0                           
        -------- -----                                 
 Total: 0.489967 100.0                                 
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Rows:
          name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
 1 | BELIEVE_1 |  106  383  133 | -484 382  98 |  -19   1   0 |
 2 | BELIEVE_3 |   68  659   71 | -575 642  89 |   94  17   6 |
 3 |     SAY_1 |  106  737  111 |  170  56  12 | -592 681 361 |
 4 |     SAY_3 |   45  604   62 | -636 601  72 |   42   3   1 |
 5 |   SPEAK_1 |  115  953   84 |  583 953 155 |  -17   1   0 |
 6 |   SPEAK_3 |   50  760   27 |  106  42   2 |  438 718  94 |
 7 | SUPPOSE_1 |   66  651   66 |  353 254  33 | -442 397 125 |
 8 | SUPPOSE_3 |  115  524   88 | -428 485  83 |  121  39  16 |
 9 |    TALK_1 |   96  971  152 |  843 914 269 |  211  57  41 |
10 |    TALK_3 |   52  910   99 |  574 354  68 |  719 556 262 |
11 |   THINK_1 |   70  698   21 |   21   3   0 | -322 695  70 |
12 |   THINK_3 |  111  775   85 | -517 717 118 |  147  58  23 |

Columns:
          name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
 1 |      Impf |  189  958  199 |  574 638 246 | -407 320 303 |
 2 |      Modl |  197  764   73 | -311 534  76 |  204 230  80 |
 3 |      Prfc |  115  740   85 | -410 462  77 |  318 278 113 |
 4 |      A_SA |   63  427  165 | -740 425 136 |   43   1   1 |
 5 |      Abs_ |  167  408   77 | -237 248  37 | -191 160  59 |
 6 |   Cncrt_c |   59  373   33 | -279 289  18 | -151  84  13 |
 7 |   Cncrt_t |  140  998  271 |  845 753 396 |  481 244 315 |
 8 |      Humn |   71  326   97 | -223  74  14 | -411 252 117 |

The summary call begins with what it labels a ‘scree plot’. Scree plots are used to help 
decide how many dimensions are needed to explain the variation in the data. In prin-
cipal components analysis, factor analysis and also in multidimensional scaling, such 
‘plots’ are common. They offer a factor-by-factor breakdown of how much variation 
the analysis has explained. One looks for an ‘elbow’ in the plot, that is, a dimension 
where there is a marked drop in the amount of variation explained. There are no 
mathematical rules to decide this point, but typically it is clear – ‘most’ of the variation 
in the dispersion of data is explained by only a few of the dimensions. The more grad-
ual the ‘descent’ of the scree plot, the more trouble the analysis is having in explaining 
the dispersion of the data. We see here that the analysis actually lacks a clear elbow 
and that adding dimensions beyond the first two (the visualised dimensions) actually 
continues to improve the explained inertia considerably, the 3rd and 4th dimensions 
adding 10% explanation respectively. 

The table in the summary call, ‘Principal inertias’, contains the vital information 
for understanding the structure of a correspondence analysis. It begins with the di-
mensions (dim), then lists the Eigenvalues (value), converts these to percentages of 
explained variation (%), and then calculates the cumulative explained variation with 
the addition of each dimension (cum%). Since biplot visualisations of the results of 
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a correspondence analysis typically depict the first two dimensions, the numerical 
output here tells us that the first two dimensions explain 72.5% of the inertia. This 
means the plot that we interpret does not account for just over one quarter of the var-
iation in the data. This information is a guide to how confident we can be about the 
accuracy of the depiction. At 72.5%, less variation is explained than in the previous 
(simpler) analyses, but this figure is still sufficiently high to interpret the plot, though 
with some caution. The scree plot shows us that it might be informative to also visual-
ise the third-dimension, either in a three-dimensional plot or by producing two more 
biplots, with dimension 1 by dimension 3 and dimension 2 by dimension 3. Many of 
the R packages offer these possibilities, but we do not consider them here. 

Unlike {languageR}, the {ca} package does not automatically label the plots 
with the amount of explained inertia. If one wishes to label the x and y axes with the 
percentages of explained inertia, one simply uses the title function as above, for exam-
ple: title(xlab= “Dim 1 (51.5%)”, ylab= “Dim 2 (21%)”).

In the second half of the summary, we have two tables of information, one for the 
rows and one for the columns of the contingency table that is the basis of the analysis. 
Coordinates are only given for the first two dimensions (k=1 and k=2), the dimen-
sions visualised in a biplot (note the plots produced in languageR call these factors 1 
and 2). Normally, in correspondence analysis, interpretation is restricted to these first 
two dimensions. This table breaks down the analysis for you. For each row and each 
column in the table, the weight assigned to that column or row is indicated (mass). 
This was explained in Section 1.2. It is essentially a bias added to the calculation to 
stop small numbers having a disproportionate effect. 

The next score listed is the quality (qlt) and, as the name would suggest, this is 
a measure of the accuracy of the visualisation. This is a very useful score to consider. 
A low quality score for any given ‘feature’, that is, row or column, means the interpre-
tation of its position on the plot should be treated with extra care. The numbers are 
given in thousandths, so a figure of 375 would be 37.5% and it indicates the explained 
inertia for a given row or column (that is, the labels on the plot). So, in the table 
above, the representation in the plot of TALK_1 would be 97.1% accurate, where BE-
LIEVE_1 would be only 38.3% accurate. A quality score of less than 500 (50%) would 
suggest that the position of the data point in question does not necessarily accurately 
represent the relation of that feature to the others. This is often because a given feature 
is common to a wide range of different situations; that it correlates with distinct phe-
nomena. For example, it may be equally used in the past tense and in the future tense, 
two tenses which are otherwise distinct in the analysis. In such situations, the data 
point will lie close to the centre of the plot, the intersection of the two axes. The other 
situation is mathematically similar, but analytically different. In situations where there 
are only few occurrences of a given feature, and those few occurrences behave in dif-
ferent ways, the same effect is obtained. In the latter situation, if it possible to do so 
without losing too much data, these examples can be omitted. 
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To understand why this is the case, we need to think about how the biplots work. 
The plot is a representation of a complex n-dimensional set of associations in just two 
dimensions. Therefore, the points of the labels are not in their original, or mathemat-
ically true, positions, having been moved to enable a two-dimensional representation. 
By default, the biplots present the first two dimensions, but recall that the actual num-
ber of dimensions is the number or rows or columns (whichever is less), minus one. 
So in the table above, we have seven dimensions (the columns, minus one). Greenacre 
(2007: 87) explains this in greater detail, but the principle is that the quality score here 
is like the inertia score, explained above, broken down for each row and column (or 
plot label/data point). 

The inertia value (inr), to the right, is used to calculate the quality. But it can 
also be directly interpreted. The figure listed is the contribution of that row or column 
(feature) to explaining the total inertia. It is expressed in thousandths, so that in the 
output above, BELIEVE_1 explains 13.3% of the inertia in the analysis. So, given that 
the plot captures 72.5% of the inertia (distribution/variation in the data), this par-
ticular feature accounts for nearly 20% of the structure of the plot (13.3 / 72.5 x 100). 

The next two sections of the table, to the right, give the correlation (cor) and the 
contribution (ctr) for each of the two dimensions. These scores are, perhaps, less 
useful in most circumstances, but warrant explanation. The ctr is the contribution 
that a given row or column has made to explaining the inertia along a single principal 
axis, that is, one of the first two dimensions. For instance, the horizontal axis (k-1) in 
Figure 5 is largely determined by three features, TALK_1, SPEAK_1, and THINK_3. 
The correlation scores indicate the correlation between a principal axis and the row 
or column in question. 

2.3.2 Multiple correspondence analysis in ca
The {ca} package is one of the richest for multiple correspondence analysis. Its main 
strength lies in the fact that one can choose which of the three kinds of multiple corre-
spondence analysis one wishes to perform. Moreover, one can choose to automatically 
adjust the inertias (using Greenacre’s (2006) calculation for adjustment). This option 
is only available for the Burt matrix multiple correspondence analysis. The function 
for multiple correspondence analysis is mjca. To this, one can ‘add’ the argument 
lambda where one specifies the kind of multiple correspondence analysis to perform: 
the indicator or homogeneity analysis with lambda= “indicator”; the Burt matrix 
analysis with lambda= “Burt”; the joint analysis with lambda= “JCA”; and the 
Burt analysis with Greenacre adjusted inertia values with lambda= “adjusted”.

To perform and compare the different techniques, we use the data from the pre-
vious analyses, but we do not use the concatenated table. Multiple correspondence 
analysis may find important interactions between the aspect-mood grammatical se-
mantics and the indirect object semantics, and so we must keep these two dimensions 
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separate. We will, however, keep the combined categories of verb and grammatical 
person.

For practical reasons, we cannot consider the plots of all four possibilities. The 
joint multiple correspondence and the adjusted inertia Burt multiple correspondence 
analysis produce the best results, both in terms of graphical output and explained 
inertia. This is to be expected since, as mentioned above, one cannot normally inter-
pret the explained inertia scores in multiple correspondence analysis, unless they are 
obtained using the Greenacre ‘adjusted’ Burt matrix or the so-called joint method, 
explained below.

> data.frm <- read.table(file.choose(), sep=”\t”, header= T)
> mca_indicator_analysis <- mjca(data.frm, lambda= “indicator”)
> summary (mca_indicator_analysis)

Principal inertias (eigenvalues):
 dim    value      %   cum%   scree plot               
 1      0.587336  10.4  10.4  *************************
 2      0.479181   8.5  18.8  *******************      
 3      0.457792   8.1  26.9  ******************       
 4      0.442143   7.8  34.7  *****************        
 5      0.397579   7.0  41.7  ***************          
 6      0.358378   6.3  48.0  *************            
 7      0.333333   5.9  53.9  ************             
 8      0.333333   5.9  59.8  ************             
 …

The output here has been abbreviated. Importantly, we see that only 18.8% of the in-
ertia is explained. As mentioned above, inertia scores are not normally interpretable 
in multiple correspondence analysis and this low score is to be expected. In such anal-
yses the inertia scores can be safely ignored. In order to obtain such scores, adjusted 
Burt or joint multiple correspondence analysis should be employed. These techniques 
are described below.

We will not consider the results of the Burt multiple correspondence analysis. It 
suffices to point out that the explained inertia using the Burt matrix is slightly better 
at 27.1%, but again this is unrealistically pessimistic. The command for the Burt mul-
tiple correspondence analysis is:

  > mca_Burt_analysis <- mjca(data.frm, lambda= “Burt”)

The two most promising advances in multiple correspondence analysis are certainly 
the joint analysis and the adjustment to inertias in the Burt matrix analysis. Let us 
consider these. We begin with the joint correspondence analysis (Figure 7). By not 
including the diagonals, which offer little information to the analysis, we greatly im-
prove the explained inertia and also the projection onto the two-dimensional plane, 
the biplot. The command for the joint multiple correspondence analysis is:
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  > mca_joint_analysis <- mjca(data.frm, lambda= “JCA”)

  > plot(mca_joint_analysis, labels= c(0, 2), 

    col= c(“white”, “black”)) 

    # plots analysis with only data point labels, 

    # see Fig. 6.

The plot function includes two arguments that we have not seen before. The com-
mand labels= c(0,2) hides the row numbers (which correspond to the number 
of one’s actual language example in the raw data set). Obviously, upon occasion, it is 
important to see which examples are causing the dispersion in a plot, especially when 
looking for exemplary occurrences in linguistic discussion and result reporting. The 
second argument, col= c(“white”, “black”), hides the co-occurrence points. 
This can be used at times to show how the co-occurrence of features is projected 
across the plot. For instance, sometimes there is a single kind of co-occurrence that 
causes a given feature to be pushed away from a group. Being able to add these points 
can help in plot description. Finally, the function psch= changes the symbol repre-
senting the point on the plot. A wide range of symbols exist and can be modified by 
changing the number. We cannot consider the full extent of the graphic options here, 
but the reader is encouraged to experiment with the plot function.

The call for the numeric summary is as above: 
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  > summary(mca_joint_analysis)

  …

  Diagonal inertia discounted from eigenvalues: 0.2324778

  Percentage explained by JCA in 2 dimensions: 70.4%

  …

We only consider two lines of the numerical summary of the joint correspondence 
analysis. As mentioned, joint analysis functions by removing the diagonals of the 
analysis. These ‘intersections’ of the tables contribute little to the explanatory power 
of the analysis. The first line shows us that we improved our explanation of inertia by 
23% through their removal. The second line tells us that the explained inertia for the 
first two dimensions is 70.4%. Such a score should be reported, given the necessary 
caveat that estimating the explained inertia in a multiple correspondence analysis is 
normally unrealistically pessimistic and that this score is produced through a joint 
analysis. 

Plot interpretation is no different to the example interpretations presented above. 
We will not, therefore, interpret Figure 6, but will move onto the adjusted Burt anal-
ysis. The command line follows what we saw above. We begin with a numerical sum-
mary of the analysis:

> mca_adjusted_analysis <- mjca(data.frm, lambda= “adjusted”)
> summary(mca_adjusted_analysis)
Principal inertias (eigenvalues):

 dim    value      %   cum%   scree plot               
 1      0.145165  42.0  42.0  *************************
 2      0.047861  13.8  55.8  ********                 
 3      0.034852  10.1  65.9  ******                   
 4      0.026639   7.7  73.6  *****                    
 5      0.009287   2.7  76.2  **                       
 6      0.001411   0.4  76.6

The above numerical summary is truncated. We see that the inertia score in the first 
two dimensions is 55.8%. This is relatively low, but for a multiple correspondence 
analysis, we can still confidently interpret the biplot. For the plotting, once again, we 
hide the example numbers. The command for plotting Figure 8 follows:

  > plot(mca_adjusted_analysis, labels= c(0, 2),

    col= c(“white”, “black”)) # Figure 7.

The plots in Figure 6 and Figure 7 show the same results. However, if one compares 
the dispersion of the data points carefully, the spread is a little clearer in Figure 7, 
confirming Greenacre’s (2006) results in comparing the two methods. Moreover, the 
results here mirror those of the binary correspondence analysis presented in Figure 5. 
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This shows that there are no important interactions between the factors aspect-mood 
and indirect object semantics. If there existed interactions between these parameters 
of usage, this extra complexity would be seen here. 

The plot offers a coherent picture of the clustering of the mental predicates with 
perfective aspect and modal uses. The exceptions are the first person uses of think and 
suppose, which are similar to the communication predicates due to their association 
with the Imperfective. Relative to the mental predicates, the communication predi-
cates talk and speak also form a cluster in the top right quadrant. This cluster is less 
homogenous, being based vaguely upon Concrete Things as object semantics and the 
Imperfect. The position of the Imperfect between the top and the bottom of the right 
side of the plot shows how it is drawn between the 3rd person say and the rest of the 
communication verb cluster.

2.4 R package {anacor}

De Leeuw and Mair (2009a) developed an excellent package for simple binary and bi-
nary canonical correspondence analysis. Although canonical analysis is a useful type 
of correspondence analysis, described in Section 1.3, we cannot cover the technique 
here. Beyond its ability to perform canonical analysis, the package offers a rich variety 
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of scaling and plotting options. We will consider one of these. The package must be 
first downloaded and at the beginning of the R session it must also be loaded:

  > library(anacor)

2.4.1 Binary correspondence analysis with confidence intervals in anacor
The package {anacor} offers a range of scaling techniques and plot types – two in-
valuable additions to correspondence analysis. The different scaling methods can be 
applied to the rows and columns independently. This can be useful for revealing or 
highlighting different associations that are hidden in the blur of the plot. The centroid 
and standard scalings are typically the most useful in this regard. For some data sets, 
using a combination of the two dramatically increases the legibility of the results by 
setting one of the dimensions in the centre and ‘surrounding’ it with the other dimen-
sion. Unfortunately, we cannot cover this option, but the reader is strongly encour-
aged to experiment with combining different scaling methods with different data sets. 
Moreover, the package offers no fewer than seven two-dimensional plotting options. 
We will consider one plot type, termed the ‘joint plot’. Both the plotting and scaling 
options are explained in detail in De Leeuw and Mair (2009a). The data are loaded as 
a numerical cross-tabulation:

  > data.xtab <- read.table(file.choose(), header= T, 

    sep=“\t”, row.names= 1)

  > ca_analysis <- anacor(data.xtab, scaling= 

    c(“standard”, “standard”))

  > plot(ca_analysis, plot.type= “jointplot”)

    # see Figure 8

The anacor function takes the argument scaling=, which specifies the scaling 
method for the x and y-axis. The plotting command takes the argument plot.
type=, which specifies the type of plot desired. We have used the joint plot, which 
includes confidence ellipsoids. These ellipsoids are not based on a test for statistical 
significance, but estimate it using what the authors call the delta method (De Leeuw 
and Patrick 2009a). The ellipsoids are set at a ‘significance’ level of 95%, matching the 
alpha level of p < 0.05, standard in the social sciences. 

The plot reveals the same associations as the binary plots above, but the addition 
of the confidence ellipsoids is a welcome advance and will prove extremely useful 
for some data sets. For example, it here reveals that the associations between suppose 
in the 1st person and say in the 1st person and the Imperfect are almost surely sig-
nificant. Of course, we must return to the data for specific tests of association and/
or move to configural frequency analysis and loglinear analysis for confirmatory re-
sults. The confidence ellipsoids are merely further guides to help understand relations 
visualised in a biplot.



476 Dylan Glynn

The numerical output in anacor is basic but clear. The percentage of explained 
inertia for the first two dimensions, using the standard scaling, comes out at 82% 
(D1 50% + D2 32%) – a stable result:

> summary(ca_analysis)
z-test for singular values:
   Singular Values Asymptotical SE p-value
D1          0.5024          0.0237       0
D2          0.3210          0.0282       0

2.5 Other R packages for correspondence analysis

We have only treated some of the functionalities of the packages presented. However, 
hopefully, enough detail on both the workings of R and the application and inter-
pretation of correspondence analysis has been covered to allow the reader to delve 
further into the method and the packages presented. We have omitted five packages 
that need to be mentioned. Armed with the explanations above, these other packages 
should be approachable even for people new to R.

R package {homals}
De Leeuw and Mair (2009b), the developers of the {anacor} package, presented 
above, also author {homals}. This package has even more powerful graphic options 
than {anacor}. Not only does it offer joint plots and star plots, but there is also the 
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option of static and interactive three-dimensional plotting. The interactive plotting 
allows one to turn the plot as an object in space, in order to obtain the optimal view-
ing point or to see how the data points are related when they are hidden behind each 
other. The R code is surprisingly simple, though there are large numbers of dependent 
packages, so make sure ‘install dependencies’ is selected when downloading/install-
ing {homals}. 

R package {vegan}
The {vegan} package, Oksanen (2006) and Oksanen et al. (2011), permits the de-
trended correspondence analysis described in Section 1.3. It also has excellent or-
dination graphics. It offers the option to ‘build’ correspondence plots, using a text 
function, to add labels for categories, rows, or columns, one at a time. This option 
is excellent for complex data sets with large numbers of categories. The analysis is 
performed on the entire set, but only certain data points are labelled, facilitating in-
terpretation and reporting. 

R package {ade4}
The R package {ade4} (Dray and Dufour 2007) is, in fact, an impressive suite of func-
tions developed (and being developed) for the environmental sciences. Many of the 
techniques available in the package are useful for linguists. The suite includes a range 
of options for performing different kinds of correspondence analysis as well as for 
plotting not only the ordinate results (as above) but also the numerical output.

R package {FactoMineR}
A rich and powerful package, {FactoMineR} (Lê et al. 2008) performs principal 
components analysis (similar to correspondence analysis but for continuous data), bi-
nary correspondence analysis, and multiple correspondence analysis. One of its main 
advantages is an argument in the plot function invisible= which allows one to hide 
certain rows or columns. Although it is possible in vegan to build up a plot by adding 
rows and columns iteratively, this simple tool makes it easy to quickly see data points 
that are hidden, but also to remove complexity to aid in reporting. It also possesses 
interactive possibilities, enabling the user to move the labels on the plots (to improve 
legibility), to hide certain clusters of data points, and even to select certain clusters 
and zoom in on them. For some of these functionalities, one needs to download third 
party (yet free) software called DynGraph. The correspondence analyses presented in 
the first section of this book use this package. The use of the package is not covered in 
this discussion since, currently, DynGraph only runs on the MacOSX platform.

R package {pamctdp}
The package {pamctdp} (Pardo 2010) offers a range of tools for dealing with contin-
gency tables and for controlling the rows and columns in correspondence analysis. 
One function that has wide application is the ability to produce barplots of the profiles 
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of the rows or the columns of a correspondence analysis. This simple visualisation 
technique can help with reporting complex data sets. Producing such plots ‘manually’ 
in R is straightforward, but time consuming. 

3. Choice – correspondence or cluster

There are many statistical techniques and their number is growing. One of the most 
confounding hurdles for anyone beginning to use quantitative methods is knowing 
which techniques are possible for a given data type and which are most suitable for a 
given research question. This section outlines, briefly, a technique comparable to cor-
respondence analysis and offers information on how to choose between them.

3.1 Hierarchical cluster analysis

As an exploratory technique for categorical data, correspondence analysis shares a 
great deal with cluster analysis (presented in the preceding chapter) in that it visual-
ises data that are interpretable in an intuitive way by ‘categorising’ features relative to 
their occurrence with other features. Both techniques are obviously the kind of tools 
useful to linguists, and indeed, all social scientists. 

Despite their similarities, there are important differences. The most obvious dif-
ference lies in the visual representation of the results. The graphical representation of 
a correspondence analysis can be more difficult to interpret than the dendrograms 
typical of cluster analysis, but offers important advantages over the latter. 

This visual representation and interpretation is at once the strength and weak-
ness of correspondence analysis. Firstly, the correspondence configuration biplots do 
not give the false impression that any observed ‘clustering’ is discrete, which is an 
unfortunate side effect of a poorly interpreted dendrogram. Of course, the discrete 
visualisation in a dendrogram means that the algorithm performs the ‘grouping’, not 
the interpreter (arguably more reliable). But correspondence is not about groupings; 
it is about associations in the data. Its representation of results is both more complex 
and more ‘analogue’, and therefore, arguably, a more socio-conceptually realistic rep-
resentation of how different linguistic structures interact.

This brings us to the second, more important, advantage – the configuration bi-
plot shows the interaction of the different features of the different factors, rather than 
merely sorting the features of a single factor. Correspondence analysis reveals what is 
associated with what, in other words, which features of which variables are co-occur-
ring with others. This is in contrast to cluster analysis, where one only sees how the 
features of one factor are grouped, not what features are responsible for that group-
ing. In other words, the cluster analysis shows what is similar and different, but not 
what causes that similarity and difference.
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It should be obvious that added complexity/detail as well as an analogue/subjec-
tive interpretation can pose serious problems in correspondence analysis. The plots 
can be extremely difficult to read and interpret accurately. If the goal of a study is to 
determine which features of a given dimension are similar and which are different, 
cluster analysis is a simple and powerful technique. However, if the goal is to under-
stand the interactions of different dimensions of language use and structure, then 
correspondence analysis is worth the extra effort.

Let us move to a comparison of the visual outputs. Figures 9–14, set out, side by 
side, the graphical representations resulting from the same data in the two techniques. 
Figure 9 is a dendrogram of a hierarchical agglomerative cluster analysis of the data 
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presented in Figure 3, which is duplicated here as Figure 10 to aid in comparison. The 
cluster analysis in Figure 11 was performed using the package {MASS} and the func-
tion hclust. The distance matrix used is Euclidean and the agglomeration method 
for clustering “average”. The functions expect the data to be in a numerical cross-tab-
ulation (contingency table) format. The command line is:

  > data.xtab <- read.table(file.choose(), header= T, 

    sep= “\t”, row.names= 1) 

  > data.dist <- dist(data.xtab, method= “euclidean”)

    # converts frequency table to distance matrix

  > HCA <- hclust(data.dist, method= “average”)

    # performs the cluster analysis

  > plot(HCA, frame.plot= T)

    # Plots results and adds frame to plot, see Figure 10.

The comparison between Figure 9 and Figure 10 is self-explanatory. The biplot and 
the dendrogram present similar information differently. The main difference is that in 
the biplot, we see which features cause the ‘clustering’. 

The dendrogram in Figure 11 is produced in the package {pvclust} with the 
function pvclust. It also uses the Euclidean distance matrix, but this time the ag-
glomerating method is Ward. See Divjak and Fieller (this volume, 405–442) for an 
explanation of these concepts. Importantly, this function for cluster analysis includes 
a set of bootstrapped p-values to offer confidence estimates for the clusters.7 The  

7. Bootstrapping is a general statistical technique for obtaining an estimation of significance. 
It is not a test for significance per se, but is rather a method that generates a large set of samples 
(from the sample under investigation) with which to compare the results.
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confidence scores are labelled faintly next to the branches in the clusters. The R-code 
for this technique follows. Again, the functions expect the data to be in a cross-tabu-
lation format. 

  > library(pvclust) 

  > data.xtab <- read.table(file.choose(), header= T, 

    sep= “\t”, row.names= 1)

  > data.t <- t(data.xtab) # inverts the data

  > PVClust <- pvclust(data.t, method.hclust= “ward”, 

    method.dist= “euclidean”) 

    # produces distance matrix, 

    # performs cluster analysis and bootstraps the results.

    # Can take some time to process

  > plot(PVClust, frame= T) 

    # Plots results, see Figure 12

The addition of the bootstrapped p-values is an important contribution to the anal-
ysis. Compare the results with Figure 12, a binary correspondence analysis with a 
similar estimation of significance included. The confidence ellipsoids representing 
significant p-values are designed to capture similar information. Both visualisations 
seem reasonably successful. 

The third cluster analysis, presented in Figure 13, is not in the form of a dendro-
gram but of an unrooted cluster or ‘phylogenetic’ tree. This representation has been 
used by Schmidtke-Bode (2009) and Divjak (2010). This form functions poorly for 
only six features. Though it distinguishes them well, the sparseness of the graphics 
leaves a lot to be desired. Therefore, the data from Table 4 are used. The function for 
this kind of plot is nj and it is found in the {ape} package. 

  > library(ape)

  > data.xtab <- read.table(file.choose(), header= T, 

    sep= “\t”, row.names= 1)

  > data.dist <- dist(data.xtab)

    # converts frequency table to distance matrix

  > PhyloClust <- nj(data.dist)

    # performs the cluster analysis

  > plot(PhyloClust, type = “u”, frame= T, cex= .9)

    # Plots results, see Figure 14

The phylogenetic tree in Figure 13 is compared with a multiple correspondence anal-
ysis in Figure 14. With this more complex data, we see clearly how the two methods 
differ in their abilities to represent data structure. The phylogenetic tree is simple and 
intuitive in contrast to the correspondence analysis, which needs detailed explanation. 
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However, we know from the discussion above that the correspondence analysis in-
cludes more information, information missing in the cluster analysis. 

4. Further reading

There is a growing range of packages for performing correspondence analysis as well 
as new and improved tools in R generally. Moreover, new lines of statistical research 
are sure to bring interesting options for the technique in the near future. Within sta-
tistics, there is work on implementing permutation, or resampling, tests for corre-
spondence analysis, as well as developing and applying mathematical algorithms that 
better capture certain kinds of correlations in the data – the development of grade 
correspondence analysis (Kowalczyk et al. 2004) and so-called profile-based ap-
proaches (Speelman et al. 2003; Delaere et al. submitted) are examples at hand. With-
in Cognitive Linguistics, broadly speaking, the method of correspondence analysis 
has been applied by Arppe (2006), Plevoets et al. (2008), Szelid and Geeraerts (2008), 
Glynn (2009, 2010, 2014a, 2014b, in press), Glynn and Sjölin (2011), Krawczak and 
Glynn (2011), Krawczak (2014a, 2014b), and Krawczak and Kokorniak (2012), as well 
as several studies in this volume. 

There exists a good range of resources for learning more. J.  P.  Benzécri origi-
nally developed the technique in the late 1960s. In English, his work of reference is 
Benzécri (1992). More recently, Agresti (2002: 382–384) and Greenacre (1984) have 
championed the method. These works are difficult to approach for linguists, being 
concerned with the mathematics behind the technique, rather than its application 
and interpretation. In recent years, a range of volumes has appeared that can be used 
as manuals for performing the analysis. As mentioned above, Greenacre (2007) and 
Husson et al. (2011) are excellent manuals for both understanding the technique and 
performing it in R. Along these lines, Baayen (2008: 128–136) also offers a brief de-
scription. Le Roux and Rouanet (2010) is an excellent book: essentially it constitutes 
a detailed tutorial for the function-rich package {FactoMineR}, though it offers no 
R commands. Lastly, although older, Weller and Romney (1990) is another thorough 
and approachable alternative, but it also offers no R code. More advanced, yet still rea-
sonably practical publications include Rencher (2002: Ch. 15), Le Roux and Rouanet 
(2005), and Murtagh (2005). Also consider Greenacre and Blasius (2006), which is a 
collection of articles that seek to advance different facets of the method. Greenacre 
(2007: Appendix C) offers an annotated bibliography. For specific information on the 
plotting options, see Gower et al. (2010) and Greenacre (2010). 

Correspondence analysis and the current range of packages for performing it in 
R offer a powerful and simple tool for identifying patterns in multifactorial data. The 
options for visualisation of its results can be difficult to explain, but are extremely rich 
in the information that they display. As an exploratory method, it is an excellent heu-
ristic for getting into complex data and digging out what relates to what. 



 Correspondence analysis 483

References

Agresti, A. (2002). Categorical data analysis (2nd ed.). Hoboken: John Wiley. 
 DOI: 10.1002/ 0471249688
Arppe, A. 2006. Frequency considerations in morphology. Finnish verbs differ, too. SKY Jour-

nal of Linguistics, 19, 175–189.
Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. 

Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511801686
Baayen, R. H. (2011). languageR: Data sets and functions with “Analyzing Linguistic Data: A 

practical introduction to statistics”. R package version 1.1. Retrieved from <http://CRAN. 
R-project.org/package=languageR>.

Benzécri, J. P. (1992). Correspondence analysis handbook. New York: Marcel Dekker.
De Leeuw, J., & Mair, P. (2009a). Simple and canonical correspondence analysis using the R 

package anacor. Journal of Statistical Software, 31, 1–18. Retrieved from <http://www. 
jstatsoft.org/v31/i05/>.

De Leeuw, J., & Mair, P. (2009b). Gifi methods for optimal scaling in R: The package homals. 
Journal of Statistical Software, 31, 1–20. Retrieved from <http://www.jstatsoft.org/v31/
i04/>.

Delaere, I., Plevoets, K., & De Sutter, G. (Submitted). Measuring text type variation through 
profile-based correspondence analysis: How far apart are translated and non-translated 
Dutch? Target. International Journal of Translation Studies.

Divjak, D. (2010). Structuring the lexicon: A clustered model for near-synonymy. Berlin & New 
York: Mouton de Gruyter.

Dray, S., & Dufour, A.-B. (2007). The ade4 package: Implementing the duality diagram for 
ecologists. Journal of Statistical Software, 22, 1–20.

Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.
Glynn, D., & Sjölin, M. (2011). Cognitive Linguistic methods for literature: A usage-based ap-

proach to metanarrative and metalepsis. In A. Kwiatkowska (Ed.), Texts and minds: Papers 
in cognitive poetics and rhetoric (pp. 85–102). Frankfurt/Main: Peter Lang.

Glynn, D. (2009). Polysemy, syntax, and variation: A usage-based method for Cognitive Se-
mantics. In V. Evans, & S. Pourcel (Eds.), New directions in Cognitive Linguistics (pp. 77–
106). Amsterdam & Philadelphia: John Benjamins.

Glynn, D. (2010). Synonymy, lexical fields, and grammatical constructions: A study in us-
age-based Cognitive Semantics. In H.-J. Schmid, & S. Handl (Eds.), Cognitive foundations 
of linguistic usage-patterns: Empirical studies (pp. 89–118). Berlin & New York: Mouton de 
Gruyter.

Glynn, D. (2014a). The conceptual profile of the lexeme home: A multifactorial diachron-
ic analysis. In J. E. Díaz-Vera (Ed.), Metaphor and metonymy across time and cultures 
(pp. 265–293). Berlin & New York: Mouton de Gruyter.

Glynn, D. (2014b). The social nature of anger: Multivariate corpus evidence for context effects 
upon conceptual structure. In I. Novakova, P. Blumenthal, & D. Siepmann (Eds.), Emo-
tions in discourse (pp. 69–82). Frankfurt/Main: Peter Lang.

Glynn, D. (In press). Cognitive socio-semantics: The theoretical and analytical role of context 
in meaning. Review of Cognitive Linguistics.

Gower, J., Gardner-Lubbe, S., & le Roux, N. (2010). Understanding biplots. Chichester: Wiley.
Greenacre, M., & Blasius, J. (Eds.). (2006). Multiple correspondence analysis and related meth-

ods. London: Chapman & Hall. DOI: 10.1201/9781420011319

http://dx.doi.org/10.1002/0471249688
http://dx.doi.org/10.1017/CBO9780511801686
http://CRAN.R-project.org/package=languageR
http://CRAN.R-project.org/package=languageR
http://www.jstatsoft.org/v31/i05/
http://www.jstatsoft.org/v31/i05/
http://www.jstatsoft.org/v31/i04/
http://www.jstatsoft.org/v31/i04/
http://dx.doi.org/10.1201/9781420011319


484 Dylan Glynn

Greenacre, M., & Nenadić, O. (2010). ca: Simple, multiple and joint correspondence analysis. R 
package version 0.33. Retrieved from <http://CRAN.R-project.org/package=ca>.

Greenacre, M. (1984). Theory and applications of correspondence analysis. London: Academic 
Press.

Greenacre, M. (2006). From simple to multiple correspondence analysis. In M. Greenacre, & J. 
Blasius (Eds.), Multiple correspondence analysis and related methods (pp. 41–76). London: 
Chapman & Hall. DOI: 10.1201/9781420011319.ch2

Greenacre, M. (2007). Correspondence analysis in practice. London: Chapman & Hall. 
 DOI: 10.1201/9781420011234
Greenacre, M. (2010). Biplots in practice. Bilbao: Fundación BBVA.
Husson, F., Lê, S., & Pagès, J. (2011). Exploratory multivariate analysis by example using R.  

London: Chapman & Hall.
Kowalczyk, T., Pleszczynska, E., & Ruland, F. (Eds.). (2004). Grade models and methods for data 

analysis. München: Springer. DOI: 10.1007/978-3-540-39928-5
Krawczak, K. (2014a). Shame and its near-synonyms in English: A multivariate corpus-driven 

approach to social emotions. In I. Novakova, P. Blumenthal, & D. Siepmann (Eds.), Emo-
tions in discourse (pp. 84–94). Frankfurt/Main: Peter Lang.

Krawczak, K. (2014b). Epistemic stance predicates in English: A quantitative corpus-driven 
study of subjectivity. In D. Glynn, & M. Sjölin (Eds.), Subjectivity and epistemicity: Corpus, 
discourse, and literary approaches to stance (pp. 355–386). Lund: Lund University Press.

Krawczak, K., & Glynn, D. (2011). Context and cognition: A corpus-driven approach to paren-
thetical uses of mental predicates. In K. Kosecki, & J. Badio (Eds.), Cognitive processes in 
language (pp. 87–99). Frankfurt/Main: Peter Lang.

Krawczak, K., & Kokorniak, I. (2012). Subjective construal of think in Polish. Poznań Studies in 
Contemporary Linguistics, 48, 439–472. DOI: 10.1515/psicl-2012-0021

Le Roux, B., & Rouanet, H. (2005). Geometric data analysis: From correspondence analysis to 
structured data analysis. London: Kluwer.

Le Roux, B., & Rouanet, H. (2010). Multiple correspondence analysis. London: Sage.
Lê, S., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of 

Statistical Software, 25, 1–18.
Murtagh, F. (2005). Correspondence analysis and data coding with R and Java. London:  

Chapman & Hall. DOI: 10.1201/9781420034943
Nenadić, O., & Greenacre, M. (2007). Correspondence analysis in R, with two- and three-di-

mensional graphics: The ca package. Journal of Statistical Software, 20. Retrieved from 
<http://ww.jstatsoft.org/v20/i03>.

Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., O’Hara, R. B., Simpson, G. L., Solymos, P., 
Henry, M., Stevens, H., & Wagner, H. (2011). vegan: Community ecology package. R pack-
age version 1.17-11. Retrieved from <http://CRAN.R-project.org/package=vegan>.

Oksanen, J. (2006). Multivariate analysis of ecological communities in R: vegan tutorial. Re-
trieved from <http://cc.oulu.fi/jarioksa/softhelp/vegan.html>.

Pardo, C. (2010). ‘pamctdp’. Retrieved from <http://www.docentes.unal.edu.co/cepardot>.
Plevoets, K., Speelman, D., & Geeraerts, D. (2008). The distribution of T/V pronouns in Neth-

erlandic and Belgian Dutch. In K. Schneider, & A. Baron (Eds.), Variational pragmatics: 
Regional varieties in pluricentric languages (pp. 181–209). Amsterdam & Philadelphia: 
John Benjamins.

http://CRAN.R-project.org/package=ca
http://dx.doi.org/10.1201/9781420011319.ch2
http://dx.doi.org/10.1201/9781420011234
http://dx.doi.org/10.1007/978-3-540-39928-5
http://dx.doi.org/10.1515/psicl-2012-0021
http://dx.doi.org/10.1201/9781420034943
http://ww.jstatsoft.org/v20/i03
http://CRAN.R-project.org/package=vegan
http://cc.oulu.fi/jarioksa/softhelp/vegan.html
http://www.docentes.unal.edu.co/cepardot


 Correspondence analysis 485

Rencher, A. (2002). Methods of multivariate analysis (2nd ed.). Chichester: Wiley. 
 DOI: 10.1002/ 0471271357
Schmidtke-Bode, K. (2009). Going-to-V and gonna-V in child language: A quantitative ap-

proach to constructional development. Cognitive Linguistics, 20, 509–53. 
 DOI: 10.1515/COGL.2009.023
Speelman, D., Grondelaers, S., & Geeraerts, D. (2003). Profile-based linguistic uniformity as 

a generic method for comparing language varieties. Computers and the Humanities, 37, 
317–337. DOI: 10.1023/A:1025019216574

Szelid, V., & Geeraerts, D. (2008). Usage-based dialectology: Emotion concepts in the Southern 
Csango dialect. Review of Cognitive Linguistics, 6, 23–49. DOI: 10.1075/arcl.6.03sze

Venables, W., & Ripley, B. (2002). Modern applied statistics with S (4th ed.). London: Springer. 
DOI: 10.1007/978-0-387-21706-2

Weller, S., & Romney, K. (1990). Metric scaling correspondence analysis. London: Sage.

http://dx.doi.org/10.1002/0471271357
http://dx.doi.org/10.1515/COGL.2009.023
http://dx.doi.org/10.1023/A:1025019216574
http://dx.doi.org/10.1075/arcl.6.03sze
http://dx.doi.org/10.1007/978-0-387-21706-2

