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This chapter provides an overview of statistical tests to analyze frequency data. 
Specifically, it discusses the use, logic, and interpretation of chi-squared tests 
of two-dimensional frequency tables as well as the computation of effect sizes 
for such tables, followed by several extensions and follow-up procedures that 
are not usually discussed (such as the analysis of sub-tables of tables and the 
Marascuilo procedure). In addition, there is a brief discussion of how Poisson/
count regression can be used to analyze frequency data with more than two 
dimensions.
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1. Introduction

1.1 Discrete vs. continuous data

Usage-based linguistics is essentially a distributional science in the sense that linguists 
explore the distribution of linguistic elements at every level of linguistic analysis: pho-
nology, morphology, syntax, semantics, pragmatics and text linguistics etc. Corpus 
linguistics is no exception to this. More specifically, corpus linguists explore:

– the frequencies of occurrence of linguistic elements in corpora, for example, fre-
quency lists;

– the dispersion of linguistic elements in corpora as in, for example, measures of 
dispersion;

– the frequencies of co-occurrence of linguistic elements in corpora as in, for exam-
ple, collocation, collocational frameworks, n-grams, colligations/collostructions 
etc.
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Very often, the data we study as linguists are discrete in nature. That is, the linguistic 
elements we study come in different categories and, trivially, if two elements are labe-
led the same, they belong to the same category, and if they are labeled differently, they 
belong to different categories. In statistical approaches, this kind of scenario is usually 
described with the terminology of variables (or factors) and their levels. For example, 
when direct objects are studied, it may be interesting to describe them in terms of 
which part of speech the direct object’s head is. In other terminology, each direct ob-
ject studied is then described with regard to the variable Part of Speech by assigning 
a particular variable level to it; depending on what the direct objects look like, the 
following levels are conceivable: Part of Speech: lexical noun, Part of Speech: 
pronoun, Part of Speech: semipronoun, (such as matters or things), etc. Trivially, if 
direct objects are categorized this way, then a direct object whose head is categorized 
as Part of Speech: pronoun is, for the purposes of this analysis, identical to another 
one whose head is categorized as Part of Speech: pronoun and different from one 
whose head is categorized as Part of Speech: lexical noun.

On other occasions, the observed variables are actually not discrete, but contin-
uous, but for the purposes of an analysis they may be grouped into two or more cat-
egories such as:

– when the lengths of subjects falling between 1 and 30 syllables, for example, are 
classified as falling into the categories Length: short (such as shorter than the 
median length) and Length: long (i.e. longer than the median length);

– when the frequencies of closed-class words falling between 1 and 100,000, for 
example, are classified into the categories Frequency: low (such as between 
1 and 50 occurrences), Frequency: intermediate (such as between 51 and 
1,000 occurrences), and Frequency: high (such as between 1,001 and 100,000 
occurrences).

For the kinds of statistical methods to be discussed below, it does not really matter 
whether the variables involved in a particular study are genuinely discrete or categor-
ical in nature or have just been converted to discrete variables: the methods as well as 
their results and potential implications are the same.

The analysis of multidimensional frequency tables – i.e., tables reporting ob-
served co-occurrence frequencies of three or more features with regard to which el-
ements have been classified – has a lot to offer to linguists in general and cognitive 
linguists in particular. For example, frequency effects play an important role in most 
flavors of Cognitive Linguistics and/or Construction Grammar:

– absolute token frequencies and conditional token probabilities are correlated 
with (degree of) cognitive entrenchment and unit status (cf. Schmid 2000), age 
and speed of the acquisition of constructions (cf. Brooks and Tomasello 1999 or 
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Goldberg, Casenhiser, and Sethuraman 2004), and phonological reduction (cf. 
Bybee and Scheibman 1999);

– type frequencies are correlated with degrees of productivity and grammaticaliza-
tion (cf. Bybee 1985);

– conditional probabilities as they can be derived from corpus frequencies are cor-
related with processing/parsing strategies (cf. Saffran, Aislin, and Newport 1996 
or Saffran and Wilson 2003); etc.

But multidimensional frequency tables of course also arise in studies whose target 
is not frequency effects per se but where just the interrelations of several variables is 
studied on the basis of corpus or experimental data.

The general idea in the analysis of two- or more-dimensional frequency tables is 
to determine whether the frequencies observed in cells of the table are distributed in 
a way that is significantly different from a random distribution and, if that is the case, 
what is (most) responsible for the significant difference and what is not. The entities 
that are included in an analysis because they are potentially responsible for significant 
differences will be called predictors, and I use predictors here to refer to three different 
things:

– levels of variables;
– individual variables;
– interactions of n variables.

The first two of these three different kinds of predictors are probably obvious from 
what has been said so far, but the third may not be. An interaction of n variables is 
defined as a non-additive, or unpredictable, joint effect of the n variables (on a de-
pendent variable). Consider a case where the referents subject and object NPs have 
been coded with regard to a variable Clause (whether they are subjects or objects in 
a main or a subordinate clause) and their Givenness in discourse (on a scale from 0 
to 10). Let us assume:

– referents of subjects are more given than referents of objects;
– referents of subjects and objects in main clauses are more given than referents of 

subjects and objects in subordinate clauses.

From this, one would expect the referents of subject NPs in main clauses to be most 
given because they combine the two features – ‘given’ and ‘being in a main clause’ that 
co-occur with high values of Givenness. If they turn out to be least given, however, 
then this would be a two-way interaction between the variables GramRelation (with 
the levels subject and object) and Clause (with the levels main and subordinate).

Before we turn to the actual analysis of frequencies of discrete data, I first need to 
make a few general remarks that apply to virtually all evaluations of frequency tables, 
in fact to most statistical methods in general.
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1.2 Methodological preliminaries

The most central methodological issue that needs to be discussed briefly is how one of 
the most fundamental principles of scientific reasoning bears upon statistical analyses 
of frequency data. This most fundamental principle is entia non multiplicanda praeter 
necessitatem, which is known as Occam’s razor, or sometimes also as the principle of 
parsimony. It prohibits the inclusion of unnecessary explanatory notions into an anal-
ysis or, from the reverse perspective, it requires the analyst to show for each explana-
tory notion he wants to include that it is in fact necessary to include it. For statistical 
analyses of frequency data, this means that a researcher (i) tries to build a model of the 
observed data, i.e. a quantitative representation of the potentially relevant relations in 
the data that contains all predictors under consideration, and then (ii) must succes-
sively determine whether the predictors currently included in the model may in fact 
be included in the model or whether they have to be eliminated from consideration 
because their influence is too small to be statistically reliable/significant or conceptu-
ally noteworthy/substantial. This means that, especially in the area of multifactorial 
studies, the first statistical analysis is hardly ever the last because once a first statistical 
model has been built, Occam’s razor dictates it be tested for parsimony; in the domain 
of regression modeling, this process of slimming down predictors is often referred to 
as model selection.

This principle is usually recognized in multifactorial studies (to varying degrees, 
though), where many researchers now routinely go through a model selection pro-
cess in which in a stepwise fashion predictors are excluded from consideration until 
a model consists only of predictors that are significant themselves or that figure in 
higher-order interactions that are significant. However, for both mono- and multi-
factorial applications, this principle is not as often recognized for predictors that are 
neither interactions of variables or variables but variable levels. The above definition 
of predictors requires that the inclusion of different variable levels should ideally be 
scrutinized for whether variable levels must be kept apart just as the inclusions of sep-
arate variables and interactions should be. Note, though, that a conflation of variable 
levels must make sense conceptually: it is not useful to create a new combination of 
variable levels that looks nicer statistically but is conceptually senseless (cf. below for 
an example) – modeling is usually only a means to an end, not an end in itself. The 
principle of parsimony is therefore a very important methodological guideline and 
will surface in different forms below.

2. How to analyze frequency tables

This section constitutes the main part of this chapter. In Section 2.1, I discuss the 
simpler case of two-dimensional tables, whereas in Section 2.2, I explain the more 
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complex case of multidimensional tables. The discussion will be based on the open 
source software R, which can be downloaded from <http://cran.at.r-project.org/>.

2.1 Two-dimensional tables

2.1.1 2-by-2 tables
The simplest case of two-dimensional tables are 2-by-2 tables, in which one nominal 
or categorical variable is cross-tabulated with another nominal or categorical variable. 
As an example, let us consider the question of whether the disfluencies uh and uhm 
are differently frequent directly before nouns and verbs. That is, one variable is Dis-
fluency, with the levels uh and uhm, and the other variable is Part of speech of the 
following word, with the levels noun vs. verb.

The analysis of such tables is very straightforward. First, the data must be entered 
into a matrix in R. To that end, the function matrix can be used, which requires 
(i) the observed frequencies in a column-wise fashion (c(30, 50, 70, 20)) and 
(ii) the number of columns the table has (ncol=2):

  x<-matrix(c(30, 50, 70, 20), ncol=2)

While this creates the matrix of the frequencies, it is useful to add row and column 
labels. The function list takes two vectors, first the row names, and second, the 
column names:

  attr(x, “dimnames”)<-list(Disfluency=c(“uh”, “uhm”), 

   POS=c(“Noun”, “Verb”))

To see whether the data entry has been successful, the data plus the row and column 
totals can then be inspected using the function addmargins:

  addmargins(x)

            POS

  Disfluency Noun Verb Sum

         uh    30   70 100

         uhm   50   20  70

         Sum   80   90 170

Table 1. Fictitious data on the correlation of Disfluency and Part of speech 1

Noun Verb Totals

uh 30 70 100
uhm 50 20  70
Totals 80 90 170
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Such matrices are typically evaluated using a so-called chi-squared test (exceptions to 
this will be discussed below). This test requires that all observations are independent 
of each other and that 80+% of the expected frequencies are larger than 5. If this is 
the case, one can use the function chisq.test, which in the standard form to be 
discussed here requires the matrix to be tested (x) and an argument to be explained 
below (correct=FALSE); the result of the test should be saved into a new data struc-
ture, e.g., x.test:

  x.test<-chisq.test(x, correct=FALSE)

Nothing is returned, but the data structure x.test now contains all the results. Three 
things must now be done. First, one should inspect the frequencies that would have 
been expected by chance – i.e. when there is no correlation by the kind of disfluency 
and the part of speech of the following word – by calling the part of the test results that 
contain the expected frequencies:

  x.test$exp

            POS

  Disfluency      Noun     Verb

         uh  47.05882 52.94118

         uhm 32.94118 37.05882

(One can also compute each expected frequency of a cell manually by divid-
ing the product of the cell’s row and column total by the total of the table, e.g., 
100·80÷170 = 47.05882, etc.). Obviously, the expected frequencies are all greater than 
5. Therefore, the next step is to determine whether the observed result from Table 1 is 
significant – i.e. different enough from the expected result shown above – by calling 
the overall result:

  x.test

   Pearson’s Chi-squared test

  data:  x

  X-squared = 28.3671, df = 1, p-value = 1.004e-07

In this example, there is a highly significant correlation between the kind of disfluency 
and the part of speech that follows: p is much smaller than the critical value of p = 0.05. 
However, the fact that there is an overall significant result does not reveal which of 
the four cells are most responsible for this effect and how. To identify these cells, one 
should inspect the so-called Pearson residuals, which are computed as in (1).

 (1) Pearson residuals = observed – expected

√expected
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  x.test$res

            POS

  Disfluency       Noun      Verb

         uh  -2.486729  2.344511

         uhm  2.972210 -2.802227

First, if the Pearson residual in a cell is positive/negative, then the observed frequency 
in that cell is greater/less than the expected frequency in that cell. Second, the more 
the Pearson residual deviates from 0, the stronger that effect. In this case, therefore, 
the strongest effect is the preference of uhm before nouns, followed by the disprefer-
ence of uhm before verbs.

The final step is to compute an effect size. An effect size quantifies the strength of 
the observed correlation independently of the sample size. In the case of 2-by-2 tables, 
one standard effect size is Φ (phi), which theoretically ranges from 0 (‘no effect’) to 1 
(‘perfect correlation’) and is computed as shown in (2). In this case, the correlation is 
intermediately strong.

 (2) Φ = χ2

n  

  sqrt(x.test$stat/sum(x))

  X-squared

  0.4084912

The final question to be addressed is what to do when too many expected frequencies 
are too small. While sparse data are always problematic in the sense that one does not 
want to base potentially far-reaching generalizations on small data sets, there is a test 
that can be used to test such tables for significance, too, which is called the Fisher- 
Yates exact test. The R function that computes this test is fisher.test and its most 
important argument is just the matrix containing the data: 

  fisher.test(x)

   Fisher’s Exact Test for Count Data

  data:  x

  p-value = 9.66e-08

  alternative hypothesis: true odds ratio is not equal to 1

  95 percent confidence interval:

   0.08256479 0.35287555

  sample estimates:

  odds ratio

   0.1734529

In this case, where the sample size and the expected frequencies are unproblemat-
ic anyway, the p-value provides the same kind of result: the distribution of the two  
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disfluencies before the two parts of speech is most likely not random, but there is 
more. The output also provides another kind of effect size for 2-by-2 tables, the so-
called odds ratio. The odds ratio is one of several measures that expresses how much 
the distribution of a binary variable changes in response to another binary variable. 
In this case, the odds ratio quantifies the ratio of the frequency of uh before nouns 
(30/50) to the frequency of uh before verbs (70/20):

  (30/70)/(50/20)

  [1] 0.1714286

The result is similar, but not identical, to the one provided by R, which uses a more 
refined estimation algorithm (and also provides a confidence interval that is not ad-
dressed here (cf. Gries 2013: Section 3.1.5 for explanation and exemplification)). The 
logic, however, is the same: the more the odds ratio differs from 1, the stronger the 
effect. Sometimes, a scholar might not report odds ratios of 0.5 and 1.5 but logged 
odds ratios as shown below:

  log(0.5)

  [1] -0.6931472

  log(1.5)

  [1] 0.4054651

One reason for this is that odds ratios are often difficult to compare to each other: A 
beginner might look at two odds ratios of 0.5 and 1.5 and – erroneously – think they 
reflect equally strong effects because they are equally far away from 1. This is false as 
the logs of the odds ratios show: the more a logged odds ratio deviates from 0, the 
stronger the effect, which is why an odds ratio of 0.5 reflects a stronger effect than an 
odds ratio of 1.5. (In addition, logged odds ratios are also important in the context of 
logistic regression, a topic I cannot discuss here; cf. Gries 2013: 203–301 for detailed 
explanation.)

2.1.2 Larger two-dimensional r-by-c tables
Thankfully, the logic of 2-by-2 tables also applies to two-dimensional tables with more 
than two rows (i.e. r > 2) and/or two more columns (i.e. c > 2). Consider Table 2 for 
an extended version of the above disfluencies example.

Table 2. Fictitious data on the correlation of Disfluency and Part of speech 2

Conjunction Noun Verb Totals

uh  30 70  90 190
uhm  50 20  40 110
silence  20  5  10  35
Totals 100 95 140 335
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The data are entered in the same way as before:

  x<-matrix(c(30, 50, 20, 70, 20, 5, 90, 40, 10), ncol=3)

  attr(x, “dimnames”)<-list(Disfluency=c(“uh”, “uhm”, 

   “silence”), POS=c(“Noun”, “Verb”, “Conjunction”))

And the requirements of the test (in terms of the proportion of expected frequencies 
being not smaller than 5) analysis is also no different:

  x.test<-chisq.test(x, correct=FALSE)

  x.test$exp

            POS

  Disfluency      Noun      Verb Conjunction

     uh      56.71642 53.880597    79.40299

     uhm     32.83582 31.194030    45.97015

     silence 10.44776  9.925373    14.62687

  x.test

   Pearson’s Chi-squared test

  data:  x

  X-squared = 45.2273, df = 4, p-value = 3.566e-09

  x.test$res

            POS

  Disfluency       Noun      Verb Conjunction

     uh      -3.547512  2.196002   1.1892280

     uhm      2.995361 -2.004245  -0.8805362

     silence  2.955245 -1.563384  -1.2097935

The expected frequencies are unproblematic: all of them are even larger than 9. Hence, 
the p-value of the chi-squared test can be taken seriously, which points to an associa-
tion between the kind of disfluency and the part of speech of the following word. The 
nature of this association then becomes clear from the residuals: uh is dispreferred be-
fore nouns (negative residual of ≈–3.55) whereas uh is preferred before verbs (positive 
residual of ≈2.2) and before conjunctions (positive residual of ≈1.2).

Two things remain to be done. First, one again needs to compute an effect size, 
which for r-by-c tables with r > 2 and/or c > 2 is called Cramer’s V. Its formula is 
shown in (3), where min(r, c) means ‘take the numbers of rows and columns and pick 
the smaller of the two’.

 (3) V = 
χ2

n × (min(r, c) – 1)

The effect size is now smaller than before:
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  sqrt(x.test$stat/(sum(x) * (min(dim(x))-1)))

  X-squared

  0.2598142

Second, one should explore whether the data can, or in fact must, be simplified as a 
consequence of Occam’s razor, the principle that requires analysts to adopt the sim-
plest possible model. In this case, for example, the observed data distinguish three 
parts of speech – nouns, conjunctions, and verbs – but the (signs of the) residuals re-
veal that verbs and conjunctions behave alike so maybe a two-way distinction – nouns 
vs. non-nouns – is sufficient.

To test heuristically which distinction to adopt, the data are entered again, but 
this time the two levels of the part of speech that are suspected to behave the same 
are conflated:

  x.2<-matrix(c(30, 50, 20, 70+90, 20+40, 5+10), ncol=2)

  attr(x.2, “dimnames”)<-list(Disfluency=c(“uh”, “uhm”, 

   “silence”), POS=c(“Noun”, “Not noun”))

  addmargins(x.2)

            POS

  Disfluency  Noun Not noun Sum

     uh        30      160 190

     uhm       50       60 110

     silence   20       15  35

     Sum      100      235 335

Then, the analysis is repeated on the new merged data set:

  x.2.test<-chisq.test(x.2, correct=FALSE)

  x.2.test

   Pearson’s Chi-squared test

  data:  x.2

  X-squared = 43.1801, df = 2, p-value = 4.203e-10

  x.2.test$res

            POS

  Disfluency       Noun  Not noun

     uh      -3.547512  2.314141

     uhm      2.995361 -1.953958

     silence  2.955245 -1.927790

  sqrt(x.2.test$stat/(sum(x.2) * (min(dim(x.2))-1)))

  X-squared

  0.3590205
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The chi-square value has hardly changed and the effect size has even gone up consid-
erably. Both of these facts suggest that the real distinction for the disfluencies in this 
corpus may not be between nouns, verbs, and conjunctions, but just between nouns 
and non-nouns, but this would have to be tested more rigorously (using, e.g., model 
comparisons).

2.1.3 Additional applications
This section deals with two unfortunately less well-known, but nevertheless very use-
ful methods in the analysis of different kinds of two-dimensional r-by-c columns.

Testing a subtable of a table
This section is concerned with the question of what to do when one has an r-by-c 
subtable, but wishes to evaluate an s-by-d table with s ≤ r and d ≤ c. As an example, I 
will use a study of the frequencies with which four emotion metaphors are distributed 
over four registers (cf. Lohmann 2009 for an example). Lohmann studied the degree 
to which certain supposedly very pervasive conceptual metaphors are attested in dif-
ferent genres. Consider Table 3 for a (fictitious) example of the kind of data such a 
study may yield (I will explain the bold-faced figures below.)

If one entered the data …

  x<-matrix(c(8, 31, 44, 36, 5, 14, 25, 38, 4, 22, 17, 12, 

   8, 11, 16, 24), ncol=4)

  attr(x, “dimnames”)<-list(Register=c(“acad”, “spoken”, 

   “fiction”, “news”), Metaphor=c(“Heated fluid”, “Light”, 

   “NatForce”, “Other”))

and did a chi-squared test on this table, then one would find a significant result (with 
χ2 = 19.5151; df = 9; p = 0.02115). However, let us assume that one found these data 
in a study, but that one is also only interested in whether spoken conversation dif-
fered from fiction in the use of the metaphors Emotion is light and Emotion is a 
natural force, i.e., the bold-faced figures in Table 3. Contrary to what quite a few 

Table 3. Fictitious distribution of emotion metaphors in different genres

Metaphor
Register

Emotion is a 
heated fluid  
in a container

Emotion 
is light

Emotion is a 
natural force

Other Totals

Academic writing   8  5  4  8  25
Spoken conv.  31 14 22 11  78
Fiction  44 25 17 16 102
News  36 38 12 24 110
Totals 119 82 55 59 315
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people seem to think, one cannot simply extract this table from the overall table – i.e., 
pretend one had done a study oneself with just the variable levels and frequencies one 
is interested in – and run a chi-squared test on it. Thus, the following (slightly short-
ened) code and result is wrong:

  subtable<-matrix(c(14, 25, 22, 17), ncol=2)

  chisq.test(subtable, correct=FALSE) # WRONG!

          Pearson’s Chi-squared test

  data:  matrix(c(14, 22, 25, 17), ncol = 2)

  X-squared = 3.3016, df = 1, p-value = 0.06921

This test is wrong because its chi-square value is based on the marginal totals of the 
subtable (e.g. 39 vs. 39 for Emotion is light, etc.), but does not take the overall ob-
served frequencies of Emotion is light into consideration (e.g. 82 vs. 55, etc.). The 
correct test is, unfortunately, slightly more lengthy and involves the following steps 
(following Bortz, Lienert, and Boehnke 1990: Section 5.4.4).

First, one computes the chi-squared test that compares the observed row sums of 
the subtable (36 vs. 42) to the ones expected from the proportions of row sums of the 
whole table (78 vs. 102, i.e., 78/180 vs. 102/180):

  chisq.test(c(36, 42), p=c(78, 102)/180)[c(1,7)]

  $statistic

  X-squared

  0.2526975

  $expected

  [1] 33.8 44.2

Second, one computes the chi-squared test that compares the observed column sums 
of the subtable (39 vs. 39) to the ones expected from the proportions of column sums 
of the whole table (82 vs. 55, i.e. 82/137 vs. 55/137):

  chisq.test(c(39, 39), p=c(82, 55)/137)[c(1,7)]

  $statistic

  X-squared

   3.151996

  $expected

  [1] 46.68613 31.31387

Third, one computes the frequencies that would have been expected in the subtable 
if the cells were distributed proportional to the expected marginal totals according 
to the usual two-dimensional chi-square formula mentioned above, by dividing the 
product of the cell’s row and column total by the total of the table, as shown in Table 4. 
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As the penultimate step, one computes each table cell’s contribution to the chi-
square value by dividing the squared difference between the observed and the expect-
ed cell frequency by the expected frequency, as shown in Table 5. (By the way, these 
correspond to the squared Pearson residuals mentioned in (1).) 

In R, this can be done much more simply:

  exp.temp<-matrix(c(20.23, 26.46, 13.57, 17.74), ncol=2)

  sum(((subtable-exp.temp)^2)/exp.temp)

  [1] 7.266921

The final step is then, at last, to compute the difference of this last chi-square value 
and the sum of the other two. This difference is the required chi-square value and then 
provides the desired p-value:

  7.266921-(0.2526975+3.151996) # chi-square

  [1] 3.862227

  pchisq(3.862227, prod(dim(subtable)-1), lower.tail=F) # 

   p-value

  [1] 0.04938474

This chi-square value corresponds – disregarding rounding errors – to what an R 
function for this method written by the author would provide, as the last row indicates:

  sub.table(x, 2:3, 2:3) # the data and the rows/columns 

   for the sub-table

  […]

Table 4. Expected frequencies (when the cells are proportional to the expected marginal 
totals) 

Emotion is light Emotion is a natural force Totals

Spoken convers. (33.8 × 46.69) / 78 ≈ 20.23 (33.8 × 31.31) / 78 ≈ 13.57 33.8
Fiction (44.2 × 46.69) / 78 ≈ 26.46 (44.2 × 31.31) / 78 ≈ 17.74 44.2
Totals 46.69 31.31 78

Table 5. Contributions to chi-square

Emotion is light Emotion is a natural force Totals

Spoken convers. (14 – 20.23)2 / 20.23 ≈ 1.92 (22 – 13.57)2 / 13.57 ≈ 5.24 33.8
Fiction (25 – 26.46)2 / 26.46 ≈ 0.08 (17 – 17.74)2 / 17.74 ≈ 0.03 44.2
Totals 46.69 31.31 78



378 Stefan Th. Gries

  $‘Chi-squared tests’

                                  Chi-square Df    p-value

  Cells of subtable to whole table 7.2682190  3 0.06382273

  Rows (within sub-table)          0.2526975  1 0.61518204

  Columns (within sub-table)       3.1519956  1 0.07583417

  Contingency (within sub-table)   3.8635259  1 0.04934652

As is now obvious, the data in the subtable actually produce a significant result: the 
two kinds of metaphors are differently frequent in the two registers. Note again that 
the wrong approach from above – just applying a separate chi-squared test to the sub-
table – did not return a significant result, which should demonstrate how important 
it is to apply the correct methods.

The Marascuilo procedure
In order to determine how many different variable levels to retain in either a unidi-
mensional vector of frequencies or percentages, one can use the so-called Marascuilo 
procedure. Since this procedure can be applied to a simple vector of frequencies or 
percentages, it can also be used for a 2-by-c table, where it tests which of the c variable 
levels of the column variable are better conflated. To explore this procedure, we con-
sider the alternation of particle placement exemplified in (4).

 (4) a. He picked up the book.
  b. He picked the book up.

Just like many other constituent order alternations in English, the choice of one order 
by a speaker is determined by many different factors and usually made unconsciously. 
One of the factors governing particle placement is the information status of the ref-
erent of the direct object (cf. Kruisinga and Erades 1953; Chen 1982; Gries 2003): on 
the whole, it seems as if new referents prefer to occur after the particle (i.e. as in (4a)) 
whereas given referents prefer to occur before the particle (i.e. as in (4b)). However, 
since given vs. new is only the most simplistic classification of information status, 
one may want to include at least one additional level such as Status: inferable, 
which characterizes referents which have not been mentioned before in the preceding 
discourse, but which a hearer can infer on the fly from linguistic or contextual knowl-
edge. Consider Table 6 for an example data set.

The first step in applying the Marascuilo procedure is as discussed above, i.e. en-
ter the data and perform a chi-squared test for two-dimensional tables to determine 
whether there is a correlation between information status and the constituent order:

  x<-matrix(c(37, 13, 63, 37, 20, 40), ncol=3)

  attr(x, “dimnames”)<-list(“Constituent order”= 

   c(“Verb-Object-Particle”, “Verb-Particle-Object”), 

   “Information status”=c(“given”, “inferable”, “new”))

  x.test<-chisq.test(x, correct=FALSE)
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  x.test$exp

                        Information status

  Constituent order         given inferable      new

    Verb-Object-Particle 28.57143  57.14286 34.28571

    Verb-Particle-Object 21.42857  42.85714 25.71429

  x.test

          Pearson’s Chi-squared test

  data:  x

  X-squared = 21.0914, df = 2, p-value = 2.631e-05

  x.test$res

                        Information status

  Constituent order          given  inferable       new

    Verb-Object-Particle  1.576841  0.7748272 -2.439750

    Verb-Particle-Object -1.820780 -0.8946933  2.817181

  sqrt(x.test$stat/(sum(x) * (min(dim(x))-1)))

  X-squared

  0.3169151

The result is fairly obvious: there is a not particularly strong, but still highly signifi-
cant, correlation or interaction between the two variables in the expected direction: 
given and new referents prefer to occur before and after the particle, respectively. In 
addition, inferable referents pattern more like given referents – they prefer to occur 
before the particle – but less strongly so. According to Occam’s razor, one should now 
test whether all three levels of Information status are required especially since in 
this case a conflation of Information status: given and Information status: in-
ferable as a counterpart to Information status: new would make sense – whereas 
a conflation of Information status: given and Information status: new as a 
counterpart to Information status: inferable would not.

The Marascuilo procedure requires three steps. First, one computes the percent-
ages of the variable with two levels, in this case the column variable Constituent 
order:

  prop<-prop.table(x, 2) # the 2 means ‘column-wise’, 

   1 would mean ‘row-wise’

Table 6. Particle placement: Constituent order and Information status

given inferable new Totals

Verb-Object-Particle 37  63 20 120
Verb-Particle-Object 13  37 40  90
Totals 50 100 60 210



380 Stefan Th. Gries

  prop

                        Information status

  Constituent order      given inferable       new

    Verb-Object-Particle  0.74      0.63 0.3333333

    Verb-Particle-Object  0.26      0.37 0.6666667

Second, one computes all pairwise differences between the percentages of one constit-
uent order in the three information states:

– 0.74 – 0.63 = 0.11 (given – inferable);
– 0.74 – 0.333 = 0.407 (given – new); and
– 0.63 – 0.333 = 0.297 (inferable – new).

Third, one compares each of the three differences to a threshold value that must be 
computed with the rather complicated formula shown in (5) (for a significance value 
of p = 0.05):

 (5) χ2 perc1 × (1 – perc1)
p = 0.05; df = levels – 1 Σ column1

× +
perc2 × (1 – perc2)

Σ column2

For the comparison (given – inferable), this translates into (6):

 (6) 5.9915
 0.74 × 0.26

50
× + = 0.1924091

0.63 × 0.37
100

Since the observed percentage difference of 0.11 is not larger than the critical per-
centage difference for p = 0.05 at df = 3 – 1 = 2 of approximately 0.19, the difference 
between the percentages of Information status: given and Information status: 
inferable is not significant. Again, this procedure is somewhat labor-intensive, 
but can be computed easily using R. The output of applying such a function (mar) 
to the matrix x returns, among other things, the following results for the pairwise 
comparisons:

  mar(x)

  […]

  $‘pairwise comparisons’

        comparisons     diffs crit.ranges decisions

  1 given-inferable 0.1100000   0.1924091        ns

  2       given-new 0.4066667   0.2127105         *

  3   inferable-new 0.2966667   0.1901492         *

The results of the Marascuilo procedure at least suggest that one should conflate In-
formation status: given and Information status: inferable into a new cate-
gory Information status: non-new, evaluate that matrix, and report and interpret 
those results:
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  x2<-matrix(c(100, 50, 20, 40), ncol=2)

  attr(x2, “dimnames”)<-list(“Constituent order”= 

   c(“Verb-Object-Particle”, “Verb-Particle-Object”), 

   “Information status”=c(“non-new”, “new”))

  x2.test<-chisq.test(x2, correct=FALSE)

  x2.test$exp

                        Information status

  Constituent order       non-new      new

    Verb-Object-Particle 85.71429 34.28571

    Verb-Particle-Object 64.28571 25.71429

  x2.test

          Pearson’s Chi-squared test

  data:  x2

  X-squared = 19.4444, df = 1, p-value = 1.036e-05

  x2.test$res

                          Information status

  Constituent order        non-new       new

    Verb-Object-Particle  1.543033 -2.439750

    Verb-Particle-Object -1.781742  2.817181

  sqrt(x2.test$stat/(sum(x2) * (min(dim(x2))-1)))

  X-squared

  0.3042903

Both the chi-square value and the effect size hardly change as a result of the elimi-
nation of one variable level, and given this loss of one df, the p-value is even much 
smaller than before. (Note that other statistical approaches may come to different con-
clusions, which does not, however, obviate the need for some kind of test of whether 
the three levels of Information status need to be kept separate and for an explicit 
discussion of which test was used.)

This is a clear case in which Occam’s razor not only makes the results better, but 
in which it also may lead to new findings: if the researcher had not already expected 
that given and inferable were very similar – unless the researcher wanted to test 
whether they are the same, he or she should have just coded one non-new informa-
tion status – then Occam’s razor has helped to reveal this patterning.

2.2 Multidimensional tables

Two-dimensional frequency tables have probably the most widespread use of all fre-
quency tables. However, most linguistic choices are not determined by only a single 
variable, and while the analysis of multidimensional frequency tables is somewhat 
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more complex, a growing number of linguists have realized that very often only a 
multifactorial study will reveal the most important generalizations and avoid errone-
ous interpretations arising from the omission of important predictor variables (cf. the 
well-known example of Simpson’s paradox; cf. Sheskin 2011: 718–720).

Multidimensional frequency tables can be analyzed in many different ways, 
which often makes it difficult for the beginner to choose one method over another: 
loglinear models/Poisson regression, binary or multinomial logistic regression, (mul-
tiple) correspondence analysis, association rules, … are among the most frequent 
methods but I cannot discuss them all here. Binary logistic regression is a very widely 
used method but, as the name suggests, it is restricted to dependent variables with 
only two levels (cf. Gries 2013: Section 5.3 for in-depth discussion as well as Baayen  
2008: Section  6.3.1; Johnson 2008: Section 5.4; and Speelman, this volume). I will 
therefore discuss one example of a Poisson regression (which could also be inves-
tigated with a binary logistic regression). Let me begin, however, with the warning 
that this chapter cannot discuss all the tricky details of regression model selection so 
readers are advised to brush up their knowledge in this area and/or study additional 
materials (especially those readers who do not know linear regressions already); I find  
Crawley’s (2005, 2012) books most instructive, and Faraway (2006) also provides a 
good, though more technical, introduction.

In this section, I will discuss an example from a recent corpus study published in 
the ICAME Journal (Hommerberg and Tottie 2007). Their study explores two com-
plementation patterns of the verb try in British and American English: try to vs. try 
and. Their goal is “to show how native speakers of present-day British and American 
English actually use the two constructions”, and they use a data set from the Cobuild 
Direct Corpus, whose size and composition is summarized in Table 7. 

The variables Variety and Mode are self-explanatory; the variable Try refers 
to whether speakers/writers used try to or try and, and the variable Clause refers to 
whether the VP containing try is itself part of a to-clause (as in we’re going to try (to/
and) (Hommerberg and Tottie 2007: 56).

I will assume that Table 7 is in R’s workspace as a data frame called x. The str 
command summarizes the structure of the table as follows:

  str(x)

  ‘data.frame’: 16 obs. of  5 variables:

  $ VARIETY: Factor w/ 2 levels “american”,“british”: 

   1 1 1 1 ...

  $ MODE   : Factor w/ 2 levels “spoken”,“written”: 

   1 1 2 1 1 ...

  $ TRY    : Factor w/ 2 levels “and”,“to”: 

   1 1 2 2 1 1 2 2 1 ...
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  $ CLAUSE : Factor w/ 2 levels “other”,“to”: 

   1 2 1 2 1 2 1 2 ...

  $ FREQ   : int  120 90 381 174 10 26 219 167 503 706 ...

Several things are needed for a Poisson regression. First, the relevant R function is 
glm, which is short for generalized linear model. Second, the function takes two main 
arguments, the first of which is a formula that specifies which dependent variable – 
the observed frequencies of occurrence – and which predictors – which independent 
variables and which of their interactions – to include. Formulae in R are written as 
“dependent variable ~ predictors/independent variables”, where n independent vari-
ables combined with asterisks mean ‘include the independent variables and their in-
teractions’ while n independent variables combined with colons mean ‘include the 
interaction of these independent variables’. The second argument is family=pois-
son, which instructs R to compute a Poisson regression with a log-link and not a 
‘normal’ linear regression with a Gaussian identity function. In essence, this ensures 
that the regression cannot predict negative values (which would not make sense since 
frequencies cannot be negative; cf. Crawley 2012: Section 13.3 for discussion).

Given the discussion of model selection, the first step of the actual analysis con-
sists of fitting a maximal model in which all predictors are included. The following 
code computes such a model, stores it into a data structure m1, and summarizes this 
data structure (the output here is abbreviated and minimally altered).

Table 7. The data studied by Hommerberg and Tottie (2007)

Variety Mode Try Clause Freq.

american spoken and other 120
american spoken and to  90
american spoken to other 381
american spoken to to 174
american written and other  10
american written and to  26
american written to other 219
american written to to 167
british spoken and other 503
british spoken and to 706
british spoken to other 150
british spoken to to 133
british written and other  49
british written and to 127
british written to other 230
british written to to 144
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  m1<-glm(FREQ ~ VARIETY*MODE*TRY*CLAUSE, family=poisson)

  summary(m1)

  […]

  Coefficients:

                   Estimate Std.Error z value Pr(>|z|)

  (Intercept)       4.78749  0.09129  52.444  < 2e-16 ***

  VARIETYbrit       1.43310  0.10159  14.106  < 2e-16 ***

  MODEwrt          -2.48491  0.32914  -7.550 4.36e-14 ***

  TRYto             1.15531  0.10468  11.037  < 2e-16 ***

  CLAUSEto         -0.28768  0.13944  -2.063  0.03911 *

  VARIETYbrit:MODEwrt

                    0.15614  0.36157   0.432  0.66586

  VARIETYbrit:TRYto

                   -2.36526  0.14005 -16.889  < 2e-16 ***

  MODEwrt:TRYto     1.93118  0.33989   5.682 1.33e-08 ***

  VARIETYbrit:CLAUSEto

                    0.62671  0.15116   4.146 3.38e-05 ***

  MODEwrt:CLAUSEto  1.24319  0.39737   3.129  0.00176 **

  TRYto:CLAUSEto   -0.49606  0.16678  -2.974  0.00294 **

  VARIETYbrit:MODEwrt:TRYto

                    0.82503  0.38592   2.138  0.03253 *

  VARIETYbrit:MODEwrt:CLAUSEto

                   -0.62985  0.43542  -1.447  0.14803

  VARIETYbrit:TRYto:CLAUSEto 

                    0.03675  0.21309   0.172  0.86307

  MODEwrt:TRYto:CLAUSEto

                   -0.73053  0.42051  -1.737  0.08235 .

  VARIETYbrit:MODEwrt:TRYto:CLAUSEto 

                   -0.23079  0.48373  -0.477  0.63328

  […]

  Null deviance:      2.1620e+03 on 15 degrees of freedom

  Residual deviance: -8.7486e-14 on  0 degrees of freedom

  […]

The main part of the output above is a table, which lists the included predictors, their 
coefficient estimates and their significance tests. The most relevant columns are the 
first (with the name of the predictor), the second headed Estimate, and the last with 
the p-value for the predictor. The row for the intercept shows 4.78749 as an estimate, 
the antilog of which is 120, the observed frequency of the combination of the alpha-
betically first factor levels: Variety: american Mode: spoken Try: and Clause: 
other.
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The estimates that R outputs then for the predictors reflect the difference between 
the listed predictor and a reference level. For individual variables, the reference level is 
the alphabetically first, unlisted level. For instance, the value of 1.43310 for Variety: 
british means that the model estimates that, compared to the reference level of Va-
riety: american, Variety: british increases (positive sign) the estimated frequen-
cies. For instance, the value of –2.48491 for Mode: written means that the model 
estimates that, compared to the reference level of Mode: spoken, Mode: written 
reduces (negative sign) the estimated frequencies (and more strongly so than Varie-
ty: british increases them).

Another way to understand the meanings of the coefficients is to compute the 
predictions of the model, for example, for Variety: british Mode: written Try: to 
Clause: other, all one needs to do is to add up all coefficients whose predictors are 
part of this configuration and antilog the sum:

  exp(4.78749+1.43310-2.48491+1.15531+0.15614-2.36526+ 

   1.93118+0.82503)

  [1] 230.0002 # rounding difference only

This predicted frequency corresponds to the observed frequency because this is the 
maximal model that contains all predictors. According to Occam’s razor, insignifi-
cant predictors must now be weeded out. Crucially, the elimination of insignificant 
predictors always begins with the highest-order interactions and, as long as there are 
still insignificant predictors, proceeds to lower-order interactions and then to indi-
vidual variables. Crucially, a predictor is not removed even if it is significant when it 
still participates in a higher-order interaction. In this case, there is only one four-way 
interaction – Variety: Mode: Try: Clause – and it is not significant. Thus, one now 
updates the first model by removing that interaction:

  m2<-update(m1, ~. -VARIETY:MODE:TRY:CLAUSE)

However, one must now first check whether this simplification of the model was jus-
tified. This is how it is done:

  anova(m1, m2, test=”LRT”)

  […]

    Resid. Df Resid. Dev Df Deviance P(>|Chi|)

  1        0    0.00000

  2        1    0.22492  -1 -0.22492  0.6353

R evaluates the difference between the two models, and because they do not differ 
from each significantly (p = 0.6353), Occam’s razor requires one to adopt the simpler 
one, m2. One can then inspect this simpler model (with summary(m2)) and it be-
comes obvious that the only three-way interaction that is not significant is Variety: 
Try: Clause. Hence:
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  m3<-update(m2, ~. -VARIETY:TRY:CLAUSE)

  anova(m2, m3, test=”LRT”)

  […]

    Resid. Df Resid. Dev Df   Deviance Pr(>Chi)

  1         1    0.22492

  2         2    0.22633 -1 -0.0014192  0.9699

When this new model m3 is inspected, it is clear that it cannot be simplified any fur-
ther: each predictor is significant or participates in a significant interaction (Variety: 
Mode is not significant, but participates in Variety: Mode: Try, which is).

  summary(m3)

  […]

  Coefficients:

                 Estimate Std. Error z value  Pr(>|z|)

  (Intercept)     4.79421    0.08228  58.268  < 2e-16 ***

  VARIETYbrit     1.42477    0.08915  15.981  < 2e-16 ***

  MODEwrt        -2.59755    0.23561 -11.025  < 2e-16 ***

  TRYto           1.14646    0.09105  12.592  < 2e-16 ***

  CLAUSEto       -0.30343    0.10550  -2.876  0.00403 **

  VARIETYbrit:MODEwrt

                  0.29069    0.22849   1.272  0.20330

  VARIETYbrit:TRYto

                 -2.34943    0.10553 -22.263  < 2e-16 ***

  MODEwrt:TRYto   2.05052    0.23742   8.637  < 2e-16 ***

  VARIETYbrit:CLAUSEto

                  0.64521    0.10658   6.054 1.42e-09 ***

  MODEwrt:CLAUSEto

                  1.40279    0.21997   6.377 1.80e-10 ***

  TRYto:CLAUSEto -0.47355    0.10385  -4.560 5.11e-06 ***

  VARIETYbrit:MODEwrt:TRYto

                  0.67402    0.22825   2.953  0.00315 **

  VARIETYbrit:MODEwrt:CLAUSEto 

                 -0.82045    0.17546  -4.676 2.92e-06 ***

  MODEwrt:TRYto:CLAUSEto

                 -0.90750    0.20548  -4.417 1.00e-05 ***

  […]

  Null deviance:  2161.98713 on 15 degrees of freedom

  Residual deviance: 0.22633 on  2 degrees of freedom

  […]
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Often such data are summarized in the form of a table that, simplifying a bit, con-
veniently summarizes each independent variable’s significance in one p-value. This 
table, a so-called ANOVA table, can be created as follows (cf. Gries 2013: 266, 271, for 
explanation).

  library(car)

  options(contrasts=c(“contr.sum”, “contr.poly”))

     Anova(m3, type=”III”, test=”LR”) # the results are 

    not shown here

  options(contrasts=c(“contr.treatment”, “contr.poly”))

The table now combines predictors involving the same variables but different variable 
levels and confirms more succinctly what was already shown above: each predictor in 
m3 but Variety: Mode is significant.

How are the results interpreted? They are interpreted as already hinted at above, 
on the basis of the coefficients. Since I cannot discuss all the findings in detail, some 
comments must suffice. The data show, trivially, compared to the reference combina-
tion of Variety: american Mode: spoken Try: and Clause: other, setting Variety 
to british increases the predicted counts (the coefficient for Variety: british is pos-
itive), compared to the reference combination of Variety: american Mode: spoken 
Try: and Clause: other, setting Mode to written decreases the predicted counts 
(the coefficient for Mode: written is negative), etc.

More interesting, however, are the interactions that qualify these main ef-
fects. As just one example, consider the interaction Variety: british Try: to. This 
strong and highly significant interaction means that, while setting both Variety to 
british and Try to to increases the estimated counts (by the antilog of 1.42477 + 
1.14646 ≈ 2.57123), their joint effect does not boost the counts accordingly, but de-
creases them by nearly the same amount (by the antilog of –2.34943); thus, compared 
to the predicted frequency for Variety: american Mode: spoken Try: and Clause: 
other, 120.81, the predicted frequency for Variety: british Mode: spoken Try: 
to Clause: other, is increased by 24.8%, the antilog of 2.57123 – 2.34943. But then 
there is also a significant interaction Variety: british Mode: written Try: to … 
It is clear that complex interactions like these and the degree to which they are sig-
nificant or not can hardly be recognized by just eye-balling the data and are usually 
only comprehensible on the basis of well-designed graphs (e.g. bar plots of predicted 
frequencies).

This concludes the discussion of this example here. Many issues of Poisson re-
gressions could not be covered for reasons of space (such as testing the assumptions 
of Poisson regressions or how to handle over-/underdispersion). The method is pow-
erful when applied to complex data sets and definitely worth exploring in more detail.
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3. Conclusion

This brief chapter could, of course, not do justice to all the complexities that can and 
do arise in the study of frequency tables. I hope, however, that the above brief re-
marks and examples have shown how useful a statistically correct and comprehensive 
exploration of such data can be and also has hopefully whetted the reader’s appe-
tite to explore such techniques in more detail (and also their graphical exploration, 
which I could not address here at all) both in this volume and in the works referred 
to throughout this paper.
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