

Statistics in R
First steps

Joost van de Weijer and Dylan Glynn
Lund University

1. Installing R

R is freely available from www.r-project.org. On the site, one will find the
CRAN server link where the various versions (LinuX, MacOSX, and Win-
dows) can be downloaded. Follow the instructions to install R onto your per-
sonal computer.

2. Commands

Once R has been installed on your computer, you start it by double-clicking
the program's icon. A window should open entitled "R Console". In this win-
dow, you will see some introductory text, followed by an empty line that
starts with a “>” sign. This sign is called the prompt. Unlike many other pro-
grams, R does not have a graphical interface with drop-down menus or dia-
logue windows to do an analysis. Instead, you type directly in the console
window what you want the program to do. The things that you type here are
called commands or functions, many examples of which are given throughout
this book. Commands can be simple or complex. An example of a command
to read in a data file into R is given below. This command itself will not work
since the location of the file is not specified, but it serves to explain the prin-
ciple behind using command line.

mydata = read.table("dataframe.txt")

182 Joost van de Weijer and Dylan Glynn

For many users new to R, working with commands is difficult at first. Com-
mands have a very strict syntax. If they are not entered entirely correctly, they
do not work. The source of the error can be small (a missing comma, for in-
stance) and the resulting error message is usually not very helpful. Further-
more, many commands exist, which makes it difficult to remember them.
Nevertheless, writing and memorizing commands gets easier through prac-
tice. A helpful strategy is to keep and maintain a personal collection of com-
mand examples that you have used before and which are useful for the kinds
of analysis that you do.

Let us examine the above command line, identifying its constituent ele-
ments. The central element is the word read.table. This is one of many
commands that are built in into R. And it is used for importing external data.
We will see some more examples of the read.table command below. A
command, such as read.table, is a way of telling the program to do some-
thing. What the program needs to do is specified by the keyword, here im-
porting data. Next, note that read.table is followed by an opening paren-
thesis and, a bit further on at the end, a closing parenthesis. The text within
the parentheses is the name of a data file, enclosed in quotation marks. Very
often, the action that is specified by the command is performed ‘on some-
thing’; here, the data file which is stored on the computer. This part is called
the argument of the command. Note that the name of the file is put in paren-
theses.

Then notice the part to the left of the read.table keyword in the example
above. The result of the action performed by the command is saved internally
in R under the name mydata. Practically, this means that the content of the
external data file is copied, and saved in R under a new name. This name is
more or less arbitrarily chosen. There are some restrictions on the choice of
names, but almost anything will do, as long as it starts with a letter and does
not contain any special characters. The name could as well have been oldda-
ta, sunday2112, pilotstudy, or xxx. It is up to you to choose the name,
choose something short and easy to remember.

Things that are saved in R are usually referred to as ‘objects’. Once you
have created an object, it will be available until you quit the program, or until
you delete it yourself. An object can be a single number, a series of numbers,
a complete data file, a graph, the output of an analysis, and so on. These are
all stored in the so-called workspace. In order to see a listing of what is in the
workspace, you can type the command ls().

	 First steps in R 183

2. The data file

Creating a data file that will be loaded into R is an important step and one that
often leads to confusion when first learning. The idea is to take your data,
from whatever their source, and put them in a plain text file. This step needs
extreme care since text files can often include hidden formatting and other
information that will prevent the data being loaded. Typically, your data are
held in a spreadsheet file (such as those produced by MS Word’s Excel, Open
Office Calc and iWork’s Numbers) or a database (such as those produced by
MS Word’s Access, Open Office’s Base, and Apple’s FileMaker). When just
beginning, the tabular layout of a spreadsheet is arguably the easiest. This is
because when you display the data in a spreadsheet, you can easily see
whether all cells are complete, whether the columns are aligned properly, how
many cases there are, etc.

If you are using a spreadsheet, once the results look good, you can copy
and paste the data directly into a plain text file, making sure to use a text edi-
tor that strips it of formatting. It is important that the file itself does not con-
tain any ‘formatting’. If the file contains formatting or invisible markup, R
will not be able to read the file. There are many text-editing programs that can
contain hidden formatting (such as WordPad for Windows and TextEdit for
MacOSX). However, other text editors will automatically ‘strip’ any format-
ting, hidden or otherwise (such as NotePad in Windows and TextWrangler in
MacOSX). If the data are contained in a database, you need to export the data
to a plain text file. This option is also available in the spreadsheet programs.
Exporting your data will avoid the problem of hidden formatting and mark
up.

The data in the text file, whether taken from the database or a spreadsheet,
will normally be in one of two formats. The first is the flat dataframe format,
illustrated in Table 1:

Table 1. Example of a flat dataframe
verb tense person figurativity
run past 1 literal
run past 1 metaphor
jog future 2 metaphor
run past 2 literal
skip past 2 literal
jog future 1 literal

184 Joost van de Weijer and Dylan Glynn

If the columns are not perfectly straight, this does not necessarily mean there
is a problem - remember, there is no formatting. Normally, the data will be
tab delimited (the columns separated by a tab space). This is the default in
most spreadsheets and databases. R will read any type of delimitation, but the
commands below assume tab delimited data. The flat dataframe layout of the
data normally results from the manual analysis of examples in a database or
spreadsheet. In this format, the numbers of occurrences are not indicated, but
instead each occurrence is listed in a large ‘flat’ file.

The second typical format for data is a numerical tabulation. We will refer
to this as a cross-tabulation or a contingency table. In contrast to the flat data-
frame, this format is a numerical summary of the data and is typically a result
of manually counting occurrences or the results of questionnaires. However,
the format is also generated by spreadsheet, database, and concordance pro-
grams as well as other corpus utilities. An example of a cross-tabulation is
shown in Table 2.

Table 2. Example of the cross-tabulation of a contingency table
 future past 1stPers 2ndPers literal metaphor
jog 2 0 1 1 1 1
run 0 3 2 1 2 1
skip 0 1 0 1 1 0

Using the first column in Table 1 as the row names, the data in Table 2 are
the equivalent to those above. It is important to note that this table would look
considerably different if we were to take a different column in Table 1 and
use it to create the row names. This data format is sometimes referred to as a
contingency table, frequency table, cross-tabulation, xtab, or pivot table.

3. Importing the data into R

3.1 Importing data from a flat dataframe

The most common command for importing data into R is read.table(),
which we saw earlier in this text. Here we present this command again, but
now with two small additions.

mydata = read.table("dataframe.txt", header=TRUE, sep="\t")

	 First steps in R 185

In this example, there are three arguments to the command rather than just
one in the earlier example. The arguments have been separated by commas.
The first argument, "dataframe.txt" is the filename, as we already saw
above. The second argument, header=TRUE, indicates that the first line of the
data file contains the variable names, as is the case in Table 1. If this argu-
ment had been omitted, then the fields in the first line of the data file would
have been interpreted as values rather than as names, and the columns would
have been labelled with automatically chosen names instead (V1, V2, etc.).
The third argument, sep="\t", indicates that the columns are separated by
tabs. Had the columns been separated by commas instead, for instance, then
the third argument would have been sep=",".
 However, these commands will still not work – we have to add one fur-
ther piece of information. We need to tell R where to find the data file. There
are three possibilities:

mydata = read.table(file.choose(), header=TRUE, sep="\t")

mydata = read.table("clipboard", header=TRUE, sep="\t")

mydata = read.table("users/linguist/data/dataframe.txt”,
 header=TRUE, sep="\t")

In the first alternative, the name of the file has been replaced by
file.choose(). This argument causes a dialogue window to open from
which the data file can be chosen. With the second alternative, it is assumed
that the data have been copied to the clipboard and R takes the data from
there. In other words, this is similar to the copy and paste function common in
applications such as MS Word and Excel. The third option tells R to go to a
specific location and open the file. That location can be on the hard drive of a
personal computer, on a server, or even on the Internet. The location is indi-
cated as a “path”, where slashes “/” represent folders. This location or path
needs to be between inverted commas. In MacOSX and LinuХ, the command
given above indicates that the data file is in a folder called ‘data’, which is in
a folder called ‘linguist’, which in turn is in a folder called ‘users’, which is
on the boot drive of the system. In Windows, one needs to add the name of
the disk or volume typically indicated by a lowercase letter followed by a
colon, “c:” being the default label for a boot drive. Therefore, for Windows,
the equivalent command line would look like this:

mydata = read.table

("C:users/linguist/data/dataframe.txt”,

186 Joost van de Weijer and Dylan Glynn

header=TRUE, sep="\t")

The object that is being created with read.table() is called mydata. It is
important to check that the dataframe created from a data file has been
properly imported into R. It is not uncommon that something goes astray
during the process of importing, and not always does this result in an error
message in R. Below, we provide you with some commands that can help you
make sure that the newly imported data is in order. The simplest way of see-
ing what the data looks like in R is by typing the name of the object. We
called our data object mydata.

mydata

This will display the contents of the entire object. However, if the object is a
flat dataframe, this will result in the entire dataset being displayed, which will
not be helpful. In the case of a flat dataframe, a better option is to look at the
first few rows, using the command head():

head(mydata)

This command will display the column names of the dataframe (these are the
names that were in the first row of the data file; the headers in a spreadsheet
and the cell labels in a database), followed by the first six rows. There is a
corresponding command, tail(), that displays the last six rows of the data-
frame.

A second command that is useful in this regard is summary(). This com-
mand generates a numerical summary of the dataframe. This is also useful for
spotting spelling mistakes and so forth in your analysis. Remember that R
treats lowercase and uppercase letters as distinct items and does not ignore
invisible characters such as a space or a tab. It is rare that a flat dataframe is
without any mistakes.

summary(mydata)

A third command that provides information about a dataframe is the com-
mand str(). This command offers information about the structure of a data-
frame. When applied to the data from Table 1, we receive the following out-
put:

str(mydata)

	 First steps in R 187

'data.frame': 6 obs. of 4 variables:
$ verb : Factor w/ 3 levels "jog","run","skip": 2 2 1 2 3 1
$ tense : Factor w/ 2 levels "future","past": 2 2 1 2 2 1
$ person : int 1 1 2 2 2 1
$ figurativity: Factor w/ 2 levels "literal","metaphor": 1 2 2 1 1 1

The first line of the output shows that mydata is a dataframe with six obser-
vations (rows) and four variables (columns). The next four lines show the
four variables and three types of information about them. First of all, they
show their names. Second they show what type of variables they are. Here,
three of the four variables are labelled as Factor, which is the usual variable
type for categorical variables. Additionally, the str() command tells you
how many levels these variables have, that is, the number of values that these
variables take. The variables tense and figurativity have two levels, while
verb has three. The fourth variable, person, is labelled as int, which means
that the values of that variable are whole numbers. The numbers 1 and 2 are
labels for first and second person, respectively.

3.2 Importing cross-tabulations

If your data are in a cross-tabulated format, exemplified in Table 2, loading
the data is a little different. There are two ways to load the data in this case.
Firstly, one can repeat the command used above to load the data from a flat
dataframe, but add the argument row.names = 1.

mydata = read.table(file.choose(), header=TRUE, sep="\t",
 row.names=1)

The read.table command is not designed for data in this format, so R does
always not treat the data as it should (for example, the str() and summary()
commands do not work). Nevertheless, for most purposes, loading the data in
this way does not pose any problems. If you wish to see that the cross-
tabulation has been correctly loaded, enter the object name:

mydata

This brings up the cross tabulation for inspection. A second, more orthodox,
way to load a cross-tabulation is to use the command read.ftable().

mydata = read.ftable(file.choose(), sep="\t")

188 Joost van de Weijer and Dylan Glynn

This command tells R that the data are in the cross-tabulated format. Note
that the header=True argument has been removed. The read.ftable
command is sensitive to the actual layout of the data, especially to how the
row and column names are placed in the text file. For this command to work,
the name of the first row must be located on a previous line, independent
from the column names. One must also remember to add a ‘blank’ first col-
umn beneath the first row-name. Table 3 exemplifies the layout.

Table 3. Layout for read.ftable() command
verb
 future past 1stPers 2ndPers literal metaphor
jog 2 0 1 1 1 1
run 0 3 2 1 2 1
skip 0 1 0 1 1 0

Both commands, read.table and read.ftable(), expect a blank line (a
return carriage) at the end of the text file, beneath the table.

Transpose a contingency table
Sometimes it is useful to transpose a cross-tabulation. Transposition means
that the entire data object is rotated by 90 degrees. That is, the rows become
columns and the columns become the rows. For a flat dataframe, this is rarely
useful, but for cross-tabulations, since the data are summarised as a given
variable and its levels are relative to another variable (or variables and levels),
inverting the table means that a statistical technique may actually examine the
data from a different perspective. Transposition can be done in R using the
command t(), as in the following example:

mydata2 = t(mydata)

The object mydata2 is now an inverted or transposed version of the of the
original cross-tabulation.

4. Making changes to data in R

It is not uncommon that information in a dataframe needs to be changed or
that new information needs to be added. A possible way of doing this is to
make changes directly in the data file and to re-load the data, but for various

	 First steps in R 189

reasons it might be desirable to keep the data file unchanged, and to do the
modifications to the dataframe in R instead.

Creating objects
To begin, we need to understand the principle of creating objects in R. Two
synonymous signs are used for this, “=” and “<-”. The signs can be used
interchangeably. The item that is to the left of the sign is the new object, and
it equates whatever is to the right. In the description above, we created an
object mydata using this sign. This object is stored in the live memory of
your computer and remains there until one quits R or one removes the object
with the command rm(). For example, when changing your data in R, one
option is to make a duplicate of your data. Of course, if something goes
wrong, one can always re-load from the data file. Moreover, having too many
data objects in R uses up precious memory. However, to help us understand
how one creates objects, let us duplicate our data:

mydata.copy = mydata

Now there are two identical copies of the data in R, one labelled mydata, the
other labelled mydata.copy. You do not normally use this functionality to
duplicate data, but to create a new object; for example, the results of a statis-
tical analysis, which you wish to store in order to plot or to run further anal-
yses upon.
 Working with large datasets or running many analyses can result in slug-
gish performance from your computer since all this information is stored in
the active memory. Therefore, objects not in use should be removed. To re-
move an object, we type rm(). The following line removes the duplicated
data.

rm(mydata.copy)

Changing a variable name
The name of one or more variables in a dataframe can be changed using the
command colnames(). In order to do this, you must also know the number
of the column with the name that needs to be changed. In the example data-
frame, there are four columns. To see the names of all four columns, type:

colnames(mydata)

190 Joost van de Weijer and Dylan Glynn

If we would want to change the name of a column, say the first one, type
colnames(mydata)[1] = "newname"

Changing a variable type
A common manipulation is to change the variable type. An example is when
the levels of a categorical variable have been coded as numbers, as was the
case with the variable person in Table 1. The levels of this variable have been
coded as 1 and 2 for first and second person, respectively. Automatically, this
variable was imported as an integer variable. As a consequence, certain com-
mands that are appropriate for a categorical variable do not work (e.g., the
levels() command) if no action is undertaken. More importantly, this vari-
able is not numerical, it is categorical; the example sentence was either in the
1st person or the 2nd person. Letting R assume it is a numerical variable will
lead to errors in any subsequent statistical analysis. The solution is to change
the variable type for person from integer to factor using the factor()
command:

mydata$person.fact = factor(mydata$person)

Note that we gave the transformed variable a new name (person.fact),
which automatically created a new variable in the dataframe. While it is pos-
sible to keep the original name after transformation, there is a risk involved of
inadvertently running the same transformation once again, and thus doubling
the effect of the transformation. This risk is avoided by using a new name for
the transformed variable.

Changing values in a dataframe
There are many situations where values need to be changed. These may be
values that were not entered correctly in the first place, values that need to be
rescaled, and so on. Here we illustrate how to change values in a dataframe
by first adding a new variable to mydata that divides the verbs into two
groups, and then changing some of the values of that new variable. Suppose,
for instance, that we would like to add a variable to mydata that indicates
verb type, and that the verbs jog and run belong to type "A" while skip be-
longs to type "B". Here we do that in two steps. In the first step we create the
new variable, call it verbtype, and assign it the value "A" for all cases in the
dataset:

mydata$verbtype="A"

	 First steps in R 191

In the second step, we change the values of verbtype into "B", but do that
only for the cases where the variable verb equals skip. This can be done us-
ing square brackets ([]) notation. In R, square brackets are often used to
identify the position of a value, as we saw above with the colnames() com-
mand. To find a value in a dataframe, we need to specify the row(s) that con-
tain a specific value, and the column(s). In other words, we need to include
two things within the square brackets: the row(s) and the column(s). With-
in square brackets, the row is always specified first, followed by a comma,
followed by the specification of the column. Schematically:

[which row(s)? , which column(s)?]

In our example, the changes need to apply only to the rows where the variable
verb equals skip, and only in the column that contains the variable
verbtype:

mydata[mydata$verb=="skip","verbtype"]

If we give this as a command to R, we get the value of the variable verbtype
for the cases where the variable verb equals skip. Now this value is still "A",
but it needs to be changed to "B". Setting the new value is easy:

mydata[mydata$verb=="skip","verbtype"]="B"

We can check the result by typing the name of the dataframe:

mydata

which shows:

 verb tense person figurativity verbtype
1 run past 1 literal A
2 run past 1 metaphor A
3 jog future 2 metaphor A
4 run past 2 literal A
5 skip past 2 literal B
6 jog future 1 literal A

Learning to use the square brackets notation is very helpful when working
with R. It is a flexible way of manipulating dataframes, or getting information
out of a dataframe.

192 Joost van de Weijer and Dylan Glynn

Creating a subset of the dataframe
It happens frequently that certain cases need to be excluded from an analysis.
These may be cases containing missing values, outliers, or cases with incor-
rect values. In R, there are several ways of creating a subset of a dataframe.
Here we present one of them, namely using the subset() command. Sup-
pose, by way of illustration, that we would like to exclude all cases for the
verb to skip from mydata. We could establish this by telling R

subset(mydata,mydata$verb!="skip")

where the operator != means is not equal to. Note furthermore, that the
quotes around the word "skip" are obligatory.
 If, on the other hand, we would like to restrict the dataset to the verb skip
only, then we would write:

subset(mydata,mydata$verb=="skip")

In this second example of the subset() command, pay attention to the dou-
ble == sign. This is also obligatory, or the command will not work.

Merging dataframes
Two dataframes can be merged in two ways, either the second dataframe is
appended below the first one, or it is added next to it. In the first merge, we
add new cases to the first dataframe; in the second we add new variables.
Merging two dataframes is easy, as long as the two dataframes match. If we
append one dataframe to the other one, both dataframes need to have the
same number of columns, and the column names need to be identical. The
command for appending one dataframe to another one is rbind() (‘row
bind’):

rbind(dataframe1,dataframe2)

If we want to add the second dataframe to the right of the first one, and the
two dataframes have the same number of rows, we can use the cbind()
command (‘column bind’):

cbind(dataframe1,dataframe2)

	 First steps in R 193

If two dataframes do not match completely, the commands rbind() and
cbind() produce errors. An alternative, for partly matched dataframes, is the
command merge(). This command allows you to specify which rows or col-
umns in the first dataframe are to be matched with those in the second.

Reordering the levels of a factor
The levels of a categorical variable may be shown using the command lev-
els(). To display the levels of the variable verb, for instance, type:

levels(mydata$verb)

The output shows the three verbs, which, by default, have been ordered al-
phabetically, i.e., jog, run and skip. This same order would also be applied
when the verbs were to be displayed in a graph or a table, or when choosing
one of the verbs as a reference to which the others are being compared. In
these cases, the default order may need to be changed into something else.
One way of establishing this is by adding an option to the factor() com-
mand. Suppose, for instance, that the three verbs were to be reordered as skip,
jog and run instead, we could write:

mydata$verb = factor(mydata$verb,levels=c("skip","jog","run"))

The effect of this command is that the verbs will now be displayed in the
specified order and that the verb that comes first serves as a reference in a
regression analysis. If only the reference level needs to be set without affect-
ing the order of the levels, there is a second alternative, namely the relev-
el() command. If, for instance, we would like to keep the original alphabeti-
cal order, but make the verb run the reference level of the three, then we
could write:

mydata$verb = relevel(mydata$verb,ref="run")

Counting frequencies
The most basic command for obtaining frequency information from a data-
frame was mentioned above. The command summary () is the first port of
call for examining frequencies in a dataframe:

summary(mydata)

194 Joost van de Weijer and Dylan Glynn

This will display a summary of the frequencies for each level of each variable
in the dataframe. However, it can only list the frequencies of up to 7 levels.
This means that if a variable has many different tags, features or levels, we
need to look specifically at the variable itself. For this, we use the table ()
command. When applied to the variable verb in mydata, this will be:

table(mydata$verb)

This will list all the levels in the variable verb and their frequencies.

5. Converting data formats

We have seen that there are two data formats, the dataframe and the cross-
tabulation. The data file shown in Table 1 is an example of a so-called flat or
raw dataframe. Every row represents a single case. Often this is the format of
a data file that is imported into R. It shows the data as they were collected by
the researcher. However, we often want to display the frequency of occur-
rences in a flat dataframe, in which case we need to convert it to a contingen-
cy table or cross-tabulation. Moreover, this numerical format is needed for
most statistical analysis, such as chi-square tests, cluster analysis, or corre-
spondence analysis.

5.1 Creating a two-way contingency table

The table() command can also be applied to two columns in a flat data-
frame, resulting in a two-dimensional contingency table. The contingency
expresses the relation between the two variables, that is, how often the levels
of the first variable co-occur with the levels of the second variable. If we were
merely looking at the variables verb and tense (the first two columns in
Table 1), then the following would create a contingency table:

table(mydata$verb,mydata$tense)

which displays the following output:

 future past
 jog 2 0
 run 0 3
 skip 0 1

	 First steps in R 195

However, this kind of command is of limited use with complex dataframes
since it is primarily for two-way contingency tables. In order to summarise a
more complex dataframe, we need to ‘stack’ the columns. In other words, we
make a string of two-way contingency tables, all relative to the same variable
and put them together in a row.

5.2 Creating a stacked contingency table

The data in mydata are organised in more than two columns. That means that,
in principle, multiple two-way contingency tables can be constructed from,
displaying the relations between the variable in the first column and each of
the subsequent variables. These contingency tables can be collected in one
larger table with the first variable in the first column and the other variables
in the columns to the right. In this case, we say that the contingency tables
have been stacked next to each other. This is how Table 2, above was created.
For explanatory purposes, it is represented here as Table 4.

Table 4. Data from Table 1 converted to a stacked contingency table

verb future past 1stPrs 2ndPrs literal metaphor
jog 2 0 1 1 1 1
run 0 3 2 1 2 1
skip 0 1 0 1 1 0

In R, one can create a stacked contingency table from a flat dataframe with
the cbind() command that we also used earlier for combining dataframes.
For instance,

cbind(table(mydata$verb,mydata$tense),
 table(mydata$verb,mydata$person))

combines the two contingency tables of verb by tense and verb by person.
The result looks like this:

 future past 1 2
jog 2 0 1 1
run 0 3 2 1
skip 0 1 0 1

196 Joost van de Weijer and Dylan Glynn

In this way, all combinations of columns can be stacked next to each other,
yielding the results displayed in Table 2. In section 10, we provide a script
that does this automatically for an entire dataframe, and which also labels the
columns with appropriate names. The script is called tablebind. If you want
to use this script, copy it into a text file on your computer and save the file as
tablebind.R. In R, give the command:

source("tablebind.R")

This makes tablebind() available as a new R-command, which takes the
flat dataframe as its argument. In order to run it, type:

tablebind(mydata)

This yields the output displayed in Table 2. Note that the first column in the
dataframe is the one upon which the cross-tabulatation will be calculated. If
you want a contingency table that calculates figurativity, for example, then
the order of the columns in the original dataframe will have to be changed
accordingly.

6. Making charts

In R, you can make almost any type of chart, and adjust the layout to the
smallest detail. The variety of possibilities is too large to describe in this in-
troduction. Here we provide just a few examples.
 The generic command for making a chart in R is plot(). When this
command is applied to two continuous variables, we get a scatter plot. When
applied to a categorical variable, we get a barchart. If we apply this command
to the variable verb in mydata, for instance, we get a chart that shows the
frequencies of the verbs in the dataframe.

plot(mydata$verb)

The chart opens in a new window, called the Quartz-window in MacOSX
(Figure 1). Sometimes, plots can be hidden behind the console. The window
menu will allow you to bring the plot to the front.

	 First steps in R 197

Figure 1. Barplot using plot()

There are several ways in which the layout of a chart can be changed. The
first is to set the overall graphical parameters of the chart with the command
par(). The command

par()

gives an overview of all the parameters and their settings. The background
colour of a graph, for instance, is abbreviated as bg. To see the current setting
for this parameter, type:

par("bg")

which gives you the default colour of the graph background. Each of these
parameters can be modified. Changing the background colour to, say, light-
grey, is established by:

par(bg="lightgrey")

Modifications in the graphical parameters stay in effect for as long as the
Quartz window is open. Once this window has been closed, the old settings
are restored in a new window.
 The second way of adjusting the chart layout is to specify additional op-
tions in the plot command. These options make it possible, among other
things, to change the scales of the axes, change the plotting symbols, add

198 Joost van de Weijer and Dylan Glynn

labels, and add a title. The following example expands the limits of the Y-axis
scale in the barchart from Figure 1 from 0 to 5, adds the label "Verb" to the
X-axis, adds the label "Frequency" to the Y-axis, and adds the title “Barchart
Example”:

plot(mydata$verb,
 ylim=c(0,5),
 xlab="Verb",
 ylab="Frequency",
 main="Barchart Example")

Note that the command has been written out on several lines. Finally, extra
elements (legend, arrows, stars, text, lines) can be added separately.
 Once the graph is finished, it can be saved as a file. In MacOSX, you
simply save the file by choosing the menu “File” and then the option “Save”.
The file is saved as a .pdf by default, giving optimal quality. Many applica-
tions, such as Preview or Adobe Acrobat have export options, which allow
the file to then be saved under any format and at resolutions defined by the
user. Under Windows, there is a list of options such as .pdf, .png, .jpg etc.,
under which the image file can be saved. Alternatively, the file can be written
to a file directly from the Console window. The following three commands
show an example of saving the barchart as a .pdf-file:

pdf("barchart.pdf")
plot(mydata$verb)
dev.off()

The same procedure can be followed for .jpg, .png and other file types. Vec-
tor formats such as .pdf offer the best quality, but certain versions of MS
Word do not accept .pdf images or automatically convert them to poor quality
bitmap images. In which case, saving the image as a high quality .png file is
the best option. For .png, a resolution of at least 600 dpi is recommended, but
more is better.
 R possesses a rich inventory of possibilities for visualising results. For
any command, if one types a ? before the command and enters this, a screen
will appear with a help file. This will give you the arguments that the com-
mand accepts, as well as an example of its use and hyperlinks to other related
commands. Experiment by typing:

?plot

	 First steps in R 199

7. Working with scripts

More often than not, an analysis consists of a series of commands. The first
command could read in the data, for example, the second command calculates
some descriptive statistics, and the third command makes a plot of the results.
In that case, it is a good idea to save them in a so-called script file. In order to
make a script, select File > New Document from the R menu. A new window
will open in which you can add commands, exactly as you typed them in the
console window. An example is shown below:

mydata=read.table("datafile.txt")
str(mydata)
summary(mydata)

Commands can be run directly from the script window. Click once on the
command that you want to run, then type command-Enter (Macintosh) or
Control-r (Windows). The command and its output are then automatically
displayed in the Console window.
 There are several advantages of working with scripts, and we recommend
that you routinely use them. One advantage is that you build up a collection
of scripts with commands that you often use, and which you can use as exam-
ples for other scripts.
 A second advantage is that scripts can contain personal comments. Com-
ments can be anything from the date that you created the script, to the purpose
of the script, to the explanation of a complex command. The following is an
example of a very short script, which includes the example command that we
saw above, with a comment added that gives information on the date the
script was created:

Example R-script, created December 2011
mydata=read.table("datafile.txt")

The first line starting with the hash-sign ("#") is the comment. The second
line is the command. Comments have no effect if you run them, they are there
only for additional information or explanation.
 A third advantage is that script files allow you to write very long com-
mands on multiple lines. Commands to make plots, typically, become very
long. Writing them on separate lines (as was shown above in section 6) usual-
ly makes the structure of the command more transparent, and makes it easier,
if there were something wrong with the command, to spot the error.

200 Joost van de Weijer and Dylan Glynn

 Finally, R offers the possibility of syntax colouring, which also can help
with seeing the structure in R commands. Syntax colouring means that differ-
ent parts of the script are shown in different colours. A specific colour is re-
served for a comment, another colour for a command keyword, a third colour
for numbers, and so on. For these reasons, script files can be a great help in
learning to work with R, and we recommend that you routinely use them.
Script files are normally saved on the computer with the extension .R.

8. Extending functionality with packages

When R is installed for the first time it contains many basic functions for
doing analyses and making plots. These base functions can be complemented
with other functions that are geared towards more special-purpose analyses,
such as the ones described in this book. Many so-called packages exist that
contain functions used within a specific discipline, or for producing specific
types of plots, or doing specific types of analysis. An incredibly rich collec-
tion of packages for performing all kinds of statistical analyses exists, and this
collection is constantly being improved upon and added to. The packages are
small and download quickly.

If you want to use a package, you need to install it first, that is, you need
to download it from the R-website and save it to your commuter. One way of
installing a package is with the install.packages() command. The fol-
lowing example shows how to install the package called ca, for doing corre-
spondence analysis described in chapter five:

install.packages("ca")

After installing, you still need to load the package before you can use it.
Loading means that the functions inside the package become available in R.
Loading a package can be done with the library() command:

library(ca)

Once you have loaded a package, it will be available until you quit R. At re-
start, you need to load again with the same command. A good way of pre-
venting you from forgetting to load the necessary package(s) is to add the
library() command to the R-script.

	 First steps in R 201

9. Going further

This short introduction is designed to help new users get started with R. There
are many things to discover if you continue working with R, and it will prob-
ably take some time to get a good grasp of the kinds of commands, packages
and graphs that are useful for the kind of analysis that you want to use R for.
To conclude, we offer three pieces of advice that we found helpful on the way
of becoming experienced R users.
 First, as mentioned above, there is a built-in help function that shows
information about the syntax of a command, some examples, and often links
to other related commands. A call for help on a command is obtained with
help() or with ?(), placing the the command in parentheses.
 Second, the Internet is a good place to search for help. There are numer-
ous sites with blogs, tutorials, and user fora. Here you can find R code, pose
questions, and see graphs. For the less experienced users, we can recommend
the site Quick-R, which contains many clear examples. Furthermore, The R-
website also offers a manual.
 Finally, the number of books on statistics using R within many different
disciplines grows steadily. Books for linguistic analysis are Baayen (2008),
Johnson (2008) and Gries (2009a, 2009b). Focusing on graphics, Keen (2010)
and Mittal (2001) are accessible to beginners and are relatively complete.
Other introductory books include Crawley (2007), Everitt & Hothorn (2009),
Maindonald & Braun (2010) and Adler (2010).

10. The tablebind-script

This script can be copied or carefully entered into R and saved as a function,
explained in section 7. The script and the data file can be downloaded from
XXXXXX.

tablebind=function(df.flat)
{
 if(ncol(df.flat)<3)
 return("Dataframe needs at least three columns.")

 for(i in 1:ncol(df.flat))
 df.flat[,i]=factor(df.flat[,i])

 df.stacked.ncol=0
 for(i in 2:ncol(df.flat))
 df.stacked.ncol=df.stacked.ncol+length(levels(df.flat[,i]))

202 Joost van de Weijer and Dylan Glynn

 k=1
 df.stacked.colnames=rep("X",df.stacked.ncol)
 for(i in 2:ncol(df.flat))
 for(j in 1:length(levels(df.flat[,i])))
 {df.stacked.colnames[k]=
 paste(colnames(df.flat[i]), lev-
els(df.flat[,i])[j],sep=".")
 k=k+1
 }

 df.stacked=table(df.flat[,1],df.flat[,2],exclude=c(NA),useNA="n
o")
 for(i in 3:ncol(df.flat))

 df.stacked=cbind(df.stacked,table(df.flat[,1],df.flat[,i],
exclude=c(NA),useNA="no"))

 df.stacked=data.frame(df.stacked)
 colnames(df.stacked)=df.stacked.colnames
 return(df.stacked)
}

References

Adler, Joseph. 2010. R in a Nutshell. A desktop quick reference. Sebastopol: O’Reilly

Media.
Baayen, Harald. 2008. Analyzing Linguistic Data: A practical introduction to statis-

tics using R. Cambridge: Cambridge University Press.
Crawley, Michael. 2007. The R Book. Chichester: John Wiley.
Dalgaard, Peter. 2008. Introductory Statistics with R (2nd ed.). Dordrecht: Srpinger.
Everitt, Brian S. & Ibrsten Hothorn. 2010. A Handbook of Statistical Analyses Using

R (2nd ed.). Boca Raton: Taylor & Francis.
Gries, Stefan Th. 2009a. Quantitative Corpus Linguistics with R: A practical intro-

duction. London: Routeledge.
Gries, Stefan Th. 2009b. Statistics for Linguistics with R: A pratical introduction.

Berlin: Mouton de Gruyter.
Keen, Kevin. 2010. Graphics for Statistics and Data Analysis with R. Boca Raton:

CRC Press.
Johnson, Keith. 2008. Quantitative Methods in Linguistics. Oxford: Blackwell.
Maindonald, John & John Braun. 2010. Data Analysis and Graphics Using R

(3rd ed.). Cambridge: Cambridge University Press.
Mittal, Hrishi V. 2011. R Graphs Cookbook. Birmingham: Packt.

